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Abstract

Factor analysis is a multivariate statistical procedure for analyzing and reduc-

ing large data se',s. Many factor analysis schemes and techniques are available that

lead to strikingly different results from the same data. This research effort used

a Monte Carlo approach to investigate the properties of two rotation methods for

simple structure, Kaiser's raw and normal varimax criterion. Data sets were devel-

oped from a set of contrived experimentel factor patterns by multiplying each factor

pattern by its transpose to create a covariance matrix. Data sets of multivariate nor-

mal deviates were in turn generated from each covariance matrix v:a the Choleski

algorithm. Rotated factor pattern matrices from each data set were compared ,

their respective experimental factor pattern on the basis of structure, loadings and

eigenvalues. These performance issues are addressed through regression analysis

and separate factor analysis in which the grand mean of proposed measures of effec-

tiveness are predicted. These measures of effectiveness include structure matching

and root mean square error between the experimental and observed factor patterns.

Several methods of characterizing factor pattern complexity and predicting rotation

criterion performance are explored.

viii



A Monte Carlo Study Of The Raw And Normal

Varimax Rotation Criterion In

Factor Analysis

I. Introduction

The concept that nations must be prepared to defend tiemselves at all times

from every type of outside threat is a relatively modern one. Prior to World War II,

countries relied on troop mobilization and conscription rather than a large 3tandin,.,

army. Fortunate for the ill-equipped and poorly trained troops entering WW II,

our scitntific and industrial communities were able to put new technology on the

battle field in nuinbers large enough to bring about a favorable end. Also fortunate

was the successful application of quantitative economic analysis and other scientific

methods to military operations. Since that time, we have seen exponential increases

not. only in weapon lethality but also ia the speed and range of weapon deployment.

The time to develop and transition new technology to the battlefield is a luxury

we no longer enjoy, making all future wars come as you are. As this new policy of

military preparedness evolved, so did the role of the operations analyst. Today's

military establishment has accepted the idea that analytic techniques can be anplied

to military policy, strategy and tactics on a regular basis.

1.1 Background

The modern operations analyst assists decision makers in allocating resources

for the planning, development, acquisition and use of military systems. in the cur-

rent environment of radical force reductions, effective and efficient allocation is crit-

ical. Rather than recommend a specific course of action, the analyst best serves the

decision maker by providing insight into competing alternatives. This is often ac-
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complished through the analyst's ability to quantify complex interrelationships and

reduce unmanageable amounts of information. Farto7 analysis is an analysis tool

well suited to this type of task. Originally de(veloped to study behavioral and bio-

logical phenomenon, lactor analysis is a statistical technique for simplifying complex

relationships that exist among a !et of observed variables. It accomplishes this by

identifying latent common factors within a data set. By linking seemingly unrelated

variables, these factors provide insight into the interrelationship and structure of the

data (Dillon and Goldstein, 1972:53).

1.2 Problem Statement

Although factor analysis, the technique, goes back to the turn of the century,

(Jackson, 1991:388) it is the increased computational capability of modern computer

systems that has its application practical. While this made factor analysis very ac-

cessible, it also led to the proliferation of many different factor analysis techniques

and variations. Subjective selection of a particular technique can lead to results strik-

ingly different from that of another researcher investigating the same data. Because

of this failure to render a unique, reproducible solution, many researchers consider

factor analysis unsatisfactory as a scientific methodology.

1.3 Research Objectives

1.3.1 Objective. The primary objective of this research effort was to de-

velop and use a Monte arlo simulation to assess the sensitivity of factor analysis

accuracy in response to uch effects as sample size, variable to factor ratio, factor

loading strengths and st ucture complexity. The simulation was written in FOR-

TRAN and allows for any odifications necessary to conduct future sensitivity anal-

ysis beyond the scope of t is effort.

1.3.2 Secondary Objectives. Methods to measure and characterize the be-

havior of data to be factor analyzed were developed. Quantifying such behavior pro-

1-2



vides insight into the accitracy to expect from different factor analysis techniques.

This information can provide guidelines for methodology selection, and limit the

amount of subjectivity introduced by the analyst conducting factor analysis activi-

ties.

1-3
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HI. Literature Retiew

Factor analysis saw most of its'early application in psychology where it became

a valuable tool in measuring underlying differences in aptitude as measured by indi-

vidual test scores (Frutcher, 1959:vii). Most information concerning the evolution of

factor analysis is therefore concentrated in literature specific to this area. In addition

to its inherent subjectivity, perhaps it is also the association with this science that

causes many to view factor analysis with suspicion. Edward Jackson summarizes

this very well in his User's Guide to Principal Components when he says,

... the solutions were not unique and the early reputation of factor analysis
was felt by many in the statistical community- to be closely associated
with witchcraft" (Jackson, 1991:388).

2.1 Principal Components Analysis

Similar in nature to factor analysis, principal components analysis is another

statistical method that can be applied to a group of variables. They are alike in

that both analyze the inter correlation among variables within a single set rather

than external criteria as in other multivariate techniques. Both attempt to reduce

the number of variables into subgroups. Htowever; principal components anaiysis

performs this reduction by deriving a small set of linear combinations of the original

variables that explains as much of the total variance of the data as possible. Con-

versely, factor analysis concentrates on the variance shared by the variables. Simply

put, principal components analysis views unobservable factors as a function of the

variables, while factor analysis treats the variables as a function of the unobservable

factors (Bauer, 1992)..

2.2 Common Factor Analytic Approach

The factor analysis model assumes a set of intercorrelated variables with each

variable composed of both common and unique parts. The common part, called

2-1
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communality, is the portion of a variable's variance that is shared with other variables

in the data set. The unique part, known as uniqueness, is that variance belonging

to this variable alone. Any variance due to measurement or experimental error

would &•lso contribute to the unique part of the variable. Shared variance provides

a means ot forming the data into coherent relatively independf At subgroups. By

studying the structure of the subgroups we can gain insight into the process that

.generated the combination of outcomes measured by the variables. In addition'to

observing the relationship of the variables, factor analysis also enables us to reduce a

large data set to a smaller, more manageable set of unobservable variables known as

common factors (Tabachnick and Fidell, 1983:374). The strength of the relationship

(correlations) between the observable variables and unobservable factors is indicated

by values known as factor loadings. An algebraic representation of a two factor

model for a four variable data set is given below.

X = A11f1 + A12f2 + el (2.1)

X2 = A21f + A22f2 + e2  (2.2)

X3 = \ 3 1fh + \ 32 f 2 + e3  (2.3)

X = A41f1- + A42f 2 + e4  (2.4)

where

Aij is the correlation of variable X with factor fj,
1i =1...,1p

and

j=1, ... ,q.

2-2
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Also, the sum squared factor loadings for Xi

A2 
- (2.5)

is the variable's communality, the variance accounted for by all the factors. There-

fore,

Oii- h? (2.6)

is the uniqueness, the variance not accounted for by the factors. The common factor

analytic model is normally summarized as follows:

X =Af + - (2.7)

where

X is the p x 1 vector of observed responses,

A is the p x q matrix of unknown constants (factor loadings),---

f is the q x 1 vector of unobservable variables (common factors),

and

0 is the p x 1 vector of unobservable variables (unique factors).

The process of calculating the correlations (factor loadings) between the observ-

able variables and the unobservable factors is known as factor extraction. Because

2-3



the calculations for factor extraction are involved and complex, this section is limited

to the fundamental equations necessary to show the general approach for extracting

factors from a data set. The procedure is odtlined below:

9 First, the data set should consist of several subjects each of which has been

measured on p variables.

e Generate E, the p x p data correlation matrix

* Calculate the associated eigenvectors and eigenvalues

E =VLVT (2.8)

where

E is the p x p correlation matrix,

V is the p x p matrix of eigenvectors

and

L is the p x p diagonal matrix of eigenvalues.

o Finally, extract the p x p factor loading matrix

A =VVZ (2.9)

where

V is p x d, d being the number of retained factors (dimensionality).

2-4



The reader should note that the eigenvalues describe the total variance ex-

plained by the respentive common factors. Eigenvalues can be calculated from a

factor loading matrix by summing the square of the factor loadings for each column

as

(2. 10)

2.3 Dimensionality Assessment

Prior to extracting the factor loading matrix, the analyst must make a di-

mensionality assessment in terms of deciding how many of the fi factors should be

retained. The number of eigenvalues, eigenvectors and corresponding common fac-

tors will equal the number of variables in the data set. Therefore, while reducing

the dimensionality of the data set is desirable, it Miust be done without jeopardizing

our ability* to interpret the ,data structure. Several methods have been put forth to

assist in dimensionality assessment, including the scree test (Catell, 1966), Horn's

test (Horn, 1965) and Kaiser's critei i (Kaiser, 1960). Kaiser's criteria is one of the

simplest methods in that it suggests discarding all factors with an eigenvalue less

than one. For detailed information on dimensionality assessment, especially as it

- - ~~Applies to factor analysis,seatr,18)

2.4 Exploratoryj versus Confirmatory Factor analysis

Factor analysis is normally conducted in one of two contexts. In the exploratory

context, the researcher has no idea what the underlying structure of the data may be

and conducts factor analysis for the purpose of gaining insight into that structure.

If the researcher has no prior information concerning the underlying structure of the

data or is testing some hypothesis for the structure, he is conducting confirmatory

factor analysis.

2-5
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2.5 Factor Interpretation

When interpreting a factor pattern, we investigate the A,, loadings of the factor

pattern matrix so as to identify factor-variable correlations and to determine the

strength of these correlations. A commonly used interpretation heu.-istic applied

against an example two factor by six variable model (Lawley and Maxwell, 1971) in

Table 2.1 demonstrates factor interpretation.

e For each variable, move across the factors (row) selecting the loading value

with the largest absolute value

e Assess each selected loading for significance. A common rule of thumb -requires

a loading to be greater than .30

* Address each variable not loaded on a factor and decide if, based on its impor-

tance to the analysis, the variable should be dropped

o Assign some intuitive meaning to the pattern of selected loadings that describes

the meaning of the variables tha t load on each of the factors

Table 2.1. Example Factor Pattern Interpretation

Variables fA 12 h 2 q,

Gaelic .553 .429 .490 .510
English .568 .288 .406 .594
History .392 .450 .356 .644

Arithmetic .740 .-273 .623 .377
Algebra .724 .-211 .569 .431

Geometry .595 .A32 .372 .628

If this factor pattern had been extracted from data corresponding to six different

sets of test scores, for example, the researcher might infer that History is influenced

by a mental process independent from that influencing the other subjects.

2-6



2.6 Simple Structure

Unfortunately, not all loading matrices possess structures so simple as to allow

this kind of interpretation procedure. A variable often has moderate loadings on

more than one factor. In these situations, pattern interpretation can become very

subjective and difficult to reproduce. If we could reduce the number of significant

loadings for a given variable, hopefully the structure would be simplified and easier

to interpret. Before addressing the various methods for simplifying a factor pattern,

it is necessary to decide upon some type of criterion for simple structure. One of the

first and still widely accepted criterion was suggested by Thurstone in 1932 (Kaiser,

1958:187). This criterion for a p x q loading matrix consists of the following five

main points (Morrison, 1990:368):

* Each row should contain at least one zero

e Each column should contain at least q zeros

* Every pair of columns should contain several responses whose loadings vanish

in one column but not in the other

* If the number of factors is four or more, every pair of columns should contain

a large number of responses with zero loadings in both columns

* Conversely, for every pair of columns only a small number of responses should

have nonzero loadiris in both columns

Since simple structures meeting all of Thurstone's conditions are rarely found in

real world data, most simplification techniques emphasize different aspects of Thur-

stone's criterion. These techniques fall into a. class of methodologies known as factor

rotations.

2.7 Factor Rotation

A factor rotation is any transformation of eigenvectors or original variables that

seeks to simplify pattern structure (Jackson, 1991:167). Carroll proposed one of the

2-7



first analytic criterion for approximating simple structure. His method minimized

the sums of cross products (across factors) of squares of factor loadings (Carroll,

1953). While arriving at a unique solution and approximating a simple structure,

Carroll's method was very computationally complex. Howe, and Lawley and Maxwell

proposed least squares methods for rotating as closely as possible to a pattern of zero

and nonzero loadings. Joreskog developed a methodology utilizing hypothesis test-

ing for simple structure (Morrison, 1990:369). A factor pattern and its associated

rotated factor pattern are shown below in Table 2.2 to illustrate the structure sim-

plification that can be accomplished through factor rotation. Although they have

identical communality and uniqueness, note how using our simple heuristic, the ro-

tated pattern on the right is far easier to interpret than the original pattern on the

left.

Table 2.2. Example Unrotated versus Rotated Factor Pattern /
f/

Variables f, f2 hw S? f f, f2 ..h I
Gaelic .55 .42 .49 .51 .36 .59 .49 .51

English .56 .28 .40 .59 .43 .46 .40 .59
History .39 .45 .35 .64 .21 .55 .35 .64

Arithmetic .74 -.27 .62 37 .78 .00 .,2 .37
Algebra .72 -.21 .56 .43 75 .05 .56 .43

Geometry .59 -. 13 .37 .62 .60 .08 .37 .62

Also note that the structuie of the rotated pattern has changed from that cf the

original factor pattern. A researcher might now infer that two separate processes

underlie the test scores. Namely, language and History are creative or right brain

activities, while tLe remaining subjects are analytical or left brain activities. As men-

tioned, simplification can reduce some of the subjectivity in structure interpretation.

But we also said each rotation technique may choose to accomplish simple structure

through a different aspect of Thurstone's criterion. Therefore, what was intended

2-8



to introduce objective, scientific methodology into the process has aggravated the

problem and generated, controversy. David Saunders wrote:

While some have argued that computers should be used to do factor anal-
ysis better, rather merely more quickly, it has been difficult to define what
better should mean. Rotation is one of the difficult cases in point. Since
computers have become available, there have been no less than fifteen
distinguishable approaches to formulations of simple structure that are
more or less amenable to computer programming. (Saunders, 1960:199)

The thirty years since this statement have seen little improvement. In his Ph.D.

thesis, Henry F. Kaiser addressed some of the origin al attempts to strip away the

subjectivity of factor rotation sc factor analysis could becomre a proper tool for sci-

entific inquiry. All of these attempts employed some form of mlathematical condition

for simple simple structure.

2.8 Quartimax Criterion

Neuhaus and Wrigley, Saunders and Ferguson simultaneously suggested one

of the first rotation criterion for simple structure (Kaiser, 19-58:188). Known as the

Quartimax criterion, it seeks to maximize the sum of the fourthi powers of the rotated

loadings. This is the mathematical equivalent of attempting t' place only one major

loading on a given factor. The quartimax criterion remains one of the most popular

and accessible methodologies today. Its formulated as

ma: ~~p2q2  2.1

This was intended to fulfill Thurstone's requirement that a large loading on one

factor should be opposite a small loading on any adjacent factor.

2-9
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2.9 Varimax Criterion

Henry Kaiser criticized the quartimax approach because he felt it concen-

trated too much on Thurstone's matheratically unmanai;eable, qualitative condi-

tions. Proposing a departure from Thurstone's criterion, Kaiser pursued simple

structure by maximizing the variance of the loadings across variables within factors.

With this approach, loadings tend to become higher for those variables with high

correlations with a factor and smaller for the other variables (Tabachnick and Fidell

,1983:398). Kaiser named this criterion the varimax criterion. Varimax is also a

very popular rotation procedure and is found in all statistics software packages. Its

formulation is

max[( A( A42

2.10 Normal Varimax Criterion

Kaiser conducted numerous experiments to assess the properties of both the

quartimax and varimax criterion. In these experiments, he generated rotated factor

patterns with the quartimax and varimax criterion from data produced by a series

.. of twenty-four psychological tests administered by Holzinger and Harman (Kaiser,

1958:192). Given to a set of forty-five school children, these tests were designed

to measure such aptitudes as visual perception, paragraph comprehension, word

comprehension, and problem reasoning (Dillon and Goldstein, 1984:310). The cor-

relations and structure of this data were well documented, giving Kaiser a priori

knowledge as to the structure each rotation criterion needed to recover. Kaiser

found .that quartimax tended to create a large general factor, but varimax recovered

the Holzinger and Harman factor pattern fairly well. However, he noted a bias in the

varimax loadings in which all loadings of the factors with the larger variance contribu-

tions were larger than the loadings for the smaller factors (Kaiser, 1958:192). Recall

2-10
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from the previous section on the factor analytic approach that variance contribution

of a factor is explained by that factor's associated eigenvalue. Kaiser attributed the

observed bias to the fact that the varimax criterion was a fourth-power function.

He reasoned that each variable in the unrotated factor pattern is weighted by its

communality, and that in a fourth-power function, a variable with a communality of

0.6, for example, would be influenced by the rotation criterion four tmes as much as

a variable with a communality of 0.3 (Kaiser, 1958:193). As discussed, the commu-

nality of a variable is the sum squared factor loadings for that variable. Assuming a

one factor model, a variable with a communality of 0.6 would have a corresponding

factor loading of 0.77. Similarly the communality 0.3 has a corresponding factor

loading of 0.54. When we take the fourth power of the factor loadings, the value

resulting from the larger loading is four times that of the smaller loading, or .35

versus .085.

To compensate for this bias, Kaiser normalized the extracted factors to reduce

the relative influence of each test during the rotation. This consisted of dividing

each variable's loading by the square root of its communality. After rotation, these

weighting factors are removed (Kaiser, 1958:193). From thi,. point Kaiser called theweighted version of the varimax criterion a normal varimax, and the original version

subsequently became known as raw var'-nax. The formulation for normal varimax is

Ma P E= ~ (2.13)

where

AM. is equal to Aj weighted by the communality of variable Xj,

2-11



h? =(2.14)

Kaiser confessed to having no rational basis for choosing this weighting scheme,

and admitted making a numerical-intuitive selection. Indeed, the normal varimax

criterion did recover the Holzinger and Harman structure without the disturbing

bias found in the raw varimax solutions. One side effect of the normal varimax

criterion, however, was that it reduced the divergence of the eigenvalues. We contend

that significant alteration of eigenvalues rernovcs important information regarding

the significance of the factors and thus the variance explained by the factors. For

this reason, eigenvalue recovery for the Holzinger and Harman data should have

been included as a measure of effectiveness when the normal varimax criterion was

evaluated.

2.11 Monte Carlo Studies

The properties of many models and computational algorithms have become

fairly well understood as a result of Monte Carlo studies. A Monte Carlo study

is a class of study that employs random variat•s to solve statistical problems that

are insensitive to the passage of time. These statistical problems are usually not

analytically tractable (Law and Keltou, 1991:113-114).

2.11.1 MacCallum Study. In 1977 MacCallum conducted a Monte Carlo

study to determine the the ability of A!*SCAL, a computerized algorithm, to re-

cover true structure inherert in simulated proximity measures (MacCalium, 1977).

ALSCAL attempts to identify separate homogeneous subgroups of individuals within

a sample, then represent each subgroup by a real or hypothetica! individual. The so-

lution is intended to provide information about stimulus relationships characterizing

different subgroups. In their study they generated, for a sample of individuals, a set
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Of simulate-,i proximity values with a known structure. After analyzing these values

with the ALSCAL procedure they measured the degree to which ALSCAL was able

to recover the inherent structure. The number of stimuli, the number of individuals,

the dimensionality, and the level of random error were all varied. In addition to

structure, they also measured ALSCAL's ability to recover stimulus dimension and

individual stimulus weights. One interesting discovery was that over the range of

their study, the number of individuals had no influence on the other measures of

recovery.

2.11.2 Cliff and Pennell Study. In this study Cliff and Pennell used a

Monte Carlo approach to determine if certain variables produced systematic effects

on the sampling variability of individual factor loadings (Cliff and Pennell, 1967).

They believed a researcher's greatest concern to be whether or not to expect a

radically different structure for the same variables when obtaining another sample

from the same population and whether a given loading was statistically significant.

In this effort they contrived two experimental factor matrices and multiplied each

by its transpose to produce a correlation matrix. The contrived factor matrices

were created with four different factor strengths, four different communalities, and

four different loading sizes. In turn, each correlation matrix was used to produce '

fifty sample factor matrices which were then rotated ,using a least squares fit, to the

population values. After rotation, Cliff and Pennell measured the standard deviation

of the sample loadings to determine their variability in light of the independent

parameters. They observed no consistent relation between sample size or loading size

and factor loading stability. Cliff and Pennell did discover that greater communalities

led to greater factor loading stability.

2.11.3 Pennell Study. Pennell again undertook a Monte Carlo approach in

1968 to further explore the dependence of factor loading sampling error on sample

size and the communality of the variable on which the loading occurs (Pennell, 1968).
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In this study, Pennell calculated the sample factor matrices using a method slightly

different from that of his work with Cliff . Instead of contriving the experimental

factor matrices, Pennell generated them randomly. He then created variables with

different communalities and inserted them into randomly generated factor matrices.

His work found that increasing communality or sample size resulted in decreased

variability in individual loadings. For ne~ar zero loadings, sample size had the largest

influence.

2.11.4 Tucker, Kfoopman and Linn Study, This study used a Monte Carlo

procedure to study the effectiveness of factor analytic methods using simulated cor-

relation matrices that were more similar to real data correlation matrices than tf ose

computed directly from factor patterns. In this approach, Tucker started with a !c

tor pattern that he called the formal model. He then confounded his formal m~odel

with the addition of numerous random influence factors and error terms to arrive at

a pattern he considered closer to real world. This formal model was then mult!2lied

by its transpose to yield a correlation matrix which was then factor analyzed to

yield a factor loading matrix. This matrix was known as the simulation model. The

simulated correlation, matrices were designed to exhibit different numbers of factors

(dimensionality) and different proportions of variance (eigenvalues) explained by the

factors. When the simulation model was compared to the formal model, large differ-

ences in the quality of results were noted with fewer factors and larger pruportions -

of factor variance.

2.11.5 Bauer Study. Bauer's Monte Carlo study was initiated to character-

ize the properties of different dimnensionality techniques (Bauer*, 1981). He addresses

the bias effect of sample size, number of variables, number of factors, and struc-

ture complexity on the Kaiser and Catell Scree tests for dimensionality. Bauer also

generates sample factor loading matrices by factor analyzing and rotating correla-

tion matrices computed from the product of a contrived factor loading matrix and
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its transpose. He determines the effectiveness of each dimensionality procedure by

calculating the mean square error between every contrived factor loading pattern

and its associated simulated matrix. His work demonstrated that mean square error

could be predicted with fair accuracy.

2.11.6 Summary. This chapter examined the development and evolution of

factor analysis as a multivariate analysis tool. This included discussion of the com-

mon factor analytic model and several rotation techniques for simplifying structure.

Particular attention was paid to the problems of subjectivity and proliferation of

factor rotation criteria. We also reviewed many effotts to understand the properties

of different factor analysis techniques and to identify influential effects. A Monte

Carlo approach was central to nearly all of these studies. The reader should note

that there was no evidence of this type of study being conducted to compare and

evaluate rotation criterion. True, Kaiser and others did some limited comparison

of the structures returned by the quartimax, raw varimax and normal varimax cri-

terion, but these were extremely narrow in scope. Recall that Kaiser admits to no

rational basis for selecting his method of normalizing factor loadings. In addition, he

compares his new criterion to raw varimax against one type of factor pattern. Re-

member also that his normal criterion tends to pull the eigenvalues closer together,

diluting information concerning relative factor strengths and significance. Overall,

Kaiser's work raises some interesting questions:

9 How well does the normal varimax perform over a wide range of sample size,

structure complexity, variable communality and factor loading?

* In addition to recovering the known structure of an experimental factor pattern,

how effective is normal varimax in terms of returning variable loadings and

eigenvalues?

* With what types of data will normal varimax not outperform raw varimax?

9 Are there circumstances where neither rotation criterion is desirable?
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These questions will be addressed throughout the course of this effort.
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III. Methodology

Chapter three presents the methodology for assessing the accuracy and associ-

ated properties of the raw and normal criterion for varimax rotation. This method-

ology is designed to investigate the impact of sample size, uniqueness and structure

complexity on accuracy. The first section covers experimental design and rationale,

followed by a description of the data generation techniques. Section 3 proposes pre-

dictors and measures of effectiveness. The chapter concludes with a discussion of

the analysis conducted to explore the relationship between the suggested measures

of effectiveness and behavior descriptors.

3.1 Experimental Design

Recall from chapter 2 that Kaiser based his normal varimax rotation crite-

rion on a weighting scheme that enabled him to restore the structure underlying

Holtzinger and Harman's data from twenty-four psychological tests. It must be

reemphasized that his validation efforts for this weighted varimax were limited to

that structure only. Table 3.1 includes the factor loading matrix for Holzinger and

Harmon's tests and an additional matrix designed to show the pattern structure.

This matrix was generated by Holtzinger and Harman through subjective rotation

criterion-andis accepted as the true structure for the tests. The twenty-four psycho-

logical tests were combined to measure five separate aptitudes among grade school -,

children. Five underlying factors are clearly evident in the structure pattern ma-

trix. Kaiser considered this, or any structure with the variables loaded roughly

equal on the factors, a comple, structure. Alternately, he suggests that a structure

with the all variables loaded on one factor to be the most simple possible structure.

This would agree with Thurstone's conditions for simple structure outlined in the

previous chapter. In light of the information concerning Kaiser's normal varimax

development and validation, we thought it prudent to investigate the sensitivity of
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Table 3.1. Factor Loadings And Pattern Structure For Holtzinger and Harman's
Twenty-Four Psychological Tests

A fA f2 ff f A f1  12 f3 f4
X, .10 .32 .62 .20 X, X
X2  .07 .15 .41 .13 X2  X
X3  .10 .12 .53 .13 X3  X
X4  .15 .18 .53 .12 X 4  X
X 5  .75 .15 .26 .15 X5 X
X6  .72 .05 .28 .25 X6 X
X 7  .81 .08 .27 .11 X7  X
X 8  .54 .26 .38 .14 X8  X
X9  .76 .-04 .29 .30 X 9  X
X1 o .28 .66 .-19 .14 X10  X
X 11 .27 .61 .-04 .29 X11  X
X 1 2  .13 .72 .09 .03 X 12  X
X 13 .24 .63 .31 .02 X 13  X
X 14 .23 .19 .-02 .48 X14  X
X 1s .11 .14 .08 .50 X 1.5  X
X16 .05 .22 .34 .45 X1 6  X
X 17 .15 .24 .-03 .62 X17r X
Xis .01 .39 .20 .52 X18  X
X 19 .12 .22 .18 .39 X19  X
X2o .31 .18 .46 .29 X20  X
X21  .17 .46 .33 .24 X 21  X
X22 .31 .12 .40 .40 X 22  X
X23 .31 .29 .54 .25 X 23  X
X 24 .39 .46 .14 .31 X 24  X

Kaiser's criterion against structures of varying complexity. As seen in Tables 3.2,

3.3 and 3.4, we began the research effort by constructing nine initial 16 variable by

4 factor experimental factor patterns.

Observe the three different levels of structure complexity for these experimental

factor patterns:

"* Level 1: Variables loaded equally on all four factors

"* Level 2: Variables predominantly loaded on the first two factors
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Table 3.2. Initial Level 1 Theoretical Factor Patterns*

Pattern 1 Pattern 2 Pattern 3
.9 0 0 0 .8 0 0 0 .7 0 0 0
.9 0 0 0 .8 0 0 0 .7 0 0 0
.9 0 0 0 .8 0 0 0 .7 0 0 0
.9 0 0 0 .8 0 0 0 .7 0 0 0
o .9 0 0 0 .8 0 0 0 .7 0 0
o .9 0 0 0 .8 0 0 0 .7 0 0
o .9 0 0 0 .8 0 0 0 .7 0 0
0 .9 00 0 .8 00 10.70 0
10 0 .9 0 0 0 .8 0 0 0 .7 0
0 0 .9 0 0 0 .8 0 0 0 .7 0
0 0 .9 0 0 0 .8 0 0 0 .7 0
0 0.9 0 0 0.8 0 0 0.7 0
0 0 0 .9 0 0 0.8 0 00 .7
o 0 0 .9 0 0 0 .8 0 0 0 .7
0 0 0 .9 0 0 0 .8 0 0 0 .7
0 0 0 .9 h?-=81 0 0 0 .8 h?-=64 0 0 0 .7 h? =.49

Table 3.3. Initial Level 2 Theoretical Factor Patterns

Pattern 4 Pattern 5 Pattern 6
.9 0 00 .8 0 00 .7 00 0
.9 0 0 0 .8 0 0 0 .7 0 0 0
.9 0 00 .8 0 00 .7 00 0
.9 0 0 0 .8 0 0 0- -.7 ---0 .0 -0

.9 0 0 0 .8 0 0 0 .7 0 0 0

.9 0 0 0 .8 0 0 0 .7 0 0 0

.9 0 0 0 .8 0 0 0 .7 0 0 0
0 .9 0 0 0 .8 0 0 0 .7 0 0
0 .9 0 0 0 .8 0 0 0 .7 0 0
0 .9 0 0 0 .8 0 0 0 .7 0 0
0 .9 0 0 0 .8 0 0 0 .7 0 0
0 .9 0 0 0 .8 0 0 0 .7 0 0
0 0 .9 0 0 0 .8 0 0 0 .7 0
0 0.9 0 0 0.8 0 0 0.7 0
0 00 .9 0 00 .8 0 0.7 0
0 00 .9 h?-=81 0 00 .8 h? =.64 0 0 .7 0 ha?=.49
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Table 3.4. Initial Level 3 Theoretical Factor Patterns

Pattern 7 Pattern 8 Pattern 9
.9 0 0 0 .8 0 0 0 .7 0 0 0

.9 0 0 0 .8 0 0 0 .7 0 0 0
.9 0 0 0 .8 0 0 0 .7 0 0 0

.9 0 0 0 .8 0 0 0 .7 0 0 0

.9 0 0 0 .8 0 0 0 .7 0 0 0

.9 0 0 0 .8 0 0 0 .7 0 0 0

.90 0 0 .8 0 0 0 .7 0 0 0

.9 0 0 0 .8 0 0 0 .7 0 0 0

.9 0 0 0 .8 0 0 0 .7 0 0 0

.9 0 0 0 .8 0 0 0 .7 0 0 0

.9 0 0 0 .8 0 0 0 .7 0 0 0

0 .9 0 0 0 .8 0 0 0 .7 0 0

0 .9 0 0 0 .8 0 0 0 .7 0 0

0 0 .9 0 0 0 .8 0 0 0 .7 0

0 0 .9 0 0 0 .8 0 0 0 .7 0

0 0 .9 h0 =.81 0 0 .8 0h=.64 0 0 .7 h0 =.49

* Level 3: Variables predominantly loaded on the first factor

The eigenvalues indicate the total variance explained by each factor. One can readily '

see that our different levels of structure complexity would affect the divergence of the

eigenvalues, with the simplest structure producing the largest divergence. The three
levels of structure complexity were chosen to investigate the impact of structure

complexity as manifested in eigenvalue divergence. In order to quantify Kaisers's

subjective description of structure complexity, v e proposed using the ratio of highest

to lowest eigenvalue of each experimental factoz pattern. We will refer to this value

as the stability ratio. Since eigenvalues provide in portant information on the validity

and strength of a factor, varying stability ratios hill hopefully provide insight as to

each criterion's ability to restore this information uon factor pattern rotation. It was

noted in chapter 2 that Kaiser did not incorporat1 eigenvalue recovery as a measure

of effectiveness for normal varimax rotation. For that matter, varimax seemed to

have a leveling effect on eigenvalue divergence. Our range of structure complexity

provides a range of eigenvalue dispersion for assessing rotational properties. Notice

3-4



at each level of structure complexity, the initial nine experimental factor patterns

exhibit three different average communalities of .81, .64, and .49. This will prov;de

insight into the influence of structure complexity, communality and the interaction

of both.

As shown in Tables 3.5 thru 3.10, each of the initial nine experimental patterns

were then perturbed across both the factors and the variables.

Table 3.5. Level 1 Perturbed Across Factors

Pattern 10 Pattern 11 Pattern 12
.9 0 0 0 .8 0 0 0 .7 0 0 0
.9 0 0 0 .8 0 0 0 .7 0 0 0
.9 0 0 0 .8 0 0 0 .7 0 0 0
.9 0 0 0 .8 0 0 0 .7 0 0 0
0 .8 0 0 0 .7 0 0 0 .6 0 0
o .8 0 0 0 .7 0 0 0 .6 0 0
0 .8 0 0 0 .7 0 0 0 .6 0 0
0 .8 0 0 0 .7 0 0 0 .6 0 0
0 0 .7 0 0 0 .6 0 0 0 .5 0
0 0 .7 0 0 0 .6 0 0 0 .5 0
0 0 .7 0 0 0 .6 0 0 0 .5 0
0 0 .7 0 0 0 .6 0 0 0 .5 0
0 0 0 .6 0 0 0 .5 0 0 0 .4
0 0 0 .6 0 0 0 .5 0 0 0 .4
0 0 0 .6 0 0 0 .5 0 0 0 .4
0 0 0 .6 0 0 0 .5 0 0 0 .4

Note when perturbing across the factors, each variable within a common factor ex-

hibits the same communality. Perturbing across the variables assigns a different

communality to each variable within a common factor. In terms of the three sub-

/jective levels of structure complexity defined earlier in this section, the structural

complexity is maintained to allow the researcher to assess how eigenvaluw dispersion

due to both variable communality and structure complexity drive rotation accuracy.

For the purposes of this effort, rotational accuracy is the ability of a rotation crite-

rion to recover the loadings, eigenvalues and structure pattern of each experimental

factor pattern. Measures of effectiveness were suggested to capture these properties
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Table 3.6. Level 2 Perturbed Across Factors

Pattern 13 Pattern 14 Pattern 15
.9 0 0 0 .8 0 0 0 .7 0 0 0
.9 0 0 0 .8 0 0 0 .7 0 0 0'
.9 0 0 10 .8 0 0 0 .7 0 .0 0
.9 0 0 0 .8 0 0 0 .7 0 0 0
.9 0 0 0 .8 0 0 0 .7 0 0 0
.9 0 0 0 .8 0 0 0 .7 0 0 0
.9 0 0 0 .8 0 0 0 .7 0 0' 0
o .8 0 0 0 .7 0 0 0 .6 0 0
0 .8 00 0 .7 00 0 .60 0
0 .8 0 0 0 .7 0 0 0 .6 0 0
o .8 0 0 0 .7 0 0 0 .6 0 0
0 .8 00 0 .7 00 0 .60 0
0 0 .7 0 0 0 .6 0 0 0 .5 0
0 0 .7 0 0 0 .6 0 0 0 .5 0
0 0 0 .6 0 0 0 .4 0 0 0 .4
LO000.6 _0 0 0.41_ 0 00.4

Table 3.7. Level 3 Perturbed Across Factors

Pattern 16 ]Pattern 17 Pattern 18
.9 0 0 01 .8 0 0 0 .7 0 0 0
.9 0 0 01 .8 0 0 0 .7 0 0 0
.9 0 0 0 .8 0 0 0 .7 0 0 0
.9 0 00 .8 0 00 .7 00 0
.9 0 0 0 .8 0 0 0 .7 0 0 0
.9 0 0 0 .8 0 0 0 .7 0 0 0
.9 0 0 0 .8 0 0 0 .7 0 0 0
.9 0100 .8 0 00 .7 00 0
.9 0 00 .8 0 00 .7 00 0
.9 0 00 .8 0 00 .7 0 00x
.9 0 00 .8 0 00 .7 00 0
0 .8 0 0 0 .7 0 *0 0 .6 0 0
0 .8 0 0 0 .7 0 0 0 .6 0 0
0 0 .7 0 0 0 .6 0 0 0 .5 0
0 0 .7 0 0 0 .6 0 0 0 .5 0
0 0 0 .6 0- 0 0 .5 0 0 0 .4
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Table 3.8. Level 1 Perturbed Across Factors And Variables

Pattern 19 Pattern 20. Pattern 21
.9 0 0 0 .8 0 0 0 .70 0 0
.8 0 0 0. .7 0 0 0 .6 0 0 .0
.7 0. 0 0 .6 0 0 0 .5 0 0' 0
.6 0 00 .5 000Q .4 00 0
0 .8 00 0 .7 00 0 .60'.0

.0.7 00 0 .6 00 0 .50 0
0 .6 00 0 .5 00 0 .4.0 0
0 .5 0 0 0 .4 0 0 0 .30 0
0 0.7 0 0 0.6 0 0 0.5 0
0 0 .6 0 0 0 .5 0 0 0 .4 0
0 0.5,0 0 0.4 0 0 0.3 0
0 0 .4 0 0 0 .3 0 0 0 .3 0
.0 0 0 .6 0 0 0 .5 0 0 0 .4
0 00 .5 0 0 0.4 0 00 .4
0 0 0 .4 0 0 0 .3 0 0 0 .3
0O 0 0 .31 0 0 0 .31 0 0 0 .3

Table 3.9. Level 2 Perturbed Across Factors And Variables

Pattern 22 Pattern 23 Pattern 24
.9 0 00 .80 0 0 .70 0 0
.8 00 0 .7 0 00 .6 00 0
.7 0 00 .6 0 00 .5 00 0
.6 0 0 0 .5 0 0 0 .4 0 '0 0
.5 0 0 0 .4 0 0 0 .3 0 0 0
.4 0 0 0 .3 0 0 0 .3 0 0 0
.3 0 0 0 .3 0 0 0 .3 0 0 0
0 .8 00 0 .7 00 0 .6 0 0 ~
0 .7 0 0 0 .6 0 0 0 .5 0 0
0 .6 00 0 .5 00 0 .40 0
0 .5 00 0 .4 00 0 .30 0
0 .4 0 0 0 .3 0 0 0 .3 0 0
0 0 .7 0 0 0 .6 0 0 0 .5 0
0 0.6 0 0 0.5 0 0 0.4 0
0 0 0.6 000 .4 0 0 0.4
0 0 0.5 0 0 0.31 000.3
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Table 3.10. Level 3 Perturbed Across Factors And Variables

Pattern 25 Pattern 26 Pattern 27
.9 0 0 0 .8 0 0 0 .7 0 0 0
.8 0 0 0 .7 0 0 0 .6 0 0 0
.7 0 0 0 .6 0 0 0 .5 0 0 0
.6 0 0 0 .5 0 0 0 .4 0 0 0
.5 0 0 0 .4 0 00 .3 0 0 0
.4 0 0 0 .3 0 0 0 .3 0 0 0
.3 0 0 0 .3 0 0 0 .3 0 0 0
.3 0 0 0 .3 0 0 0 .3 0 0 0
.3 0 0 0 .3 0 0 0 .3 0 0 0
.3 0 0 0 .3 0 0 0 .3 0 0 0
.3 0 0 0 .3 0 0 0 .3 0 0 0
0 .8 0 0 0 .7 0 0 0 .6 0 0
0 .7 0 0 0 .6 0 0 0 .5 0 0
0 0 .7 0 0 0 .6 0 0 0 .5 0
0 0 .6 0 0 0 .5 0 0 0 .4 0
0 0 0 .6 0 0 0 .4 0 0 0 .3

and will be defined in a later section. Further, the mean and standard deviation of

these measures of effectiveness will be recorded over 100 experiments for each of the

thirty-six populations corresponding to the experimental factor patterns.

Finally, the set of experimental patterns was further expanded by randomly

adding nuisance factors, ranging between .64 and .01, to variables of the perturbed

factor patterns. This has the effect of inflating the communalities of the correspon4 -

ing variables. These additional experimental factor patterns are shown in Tables 3.11

thru 3.13.

Each theoretical factor pattern was analyzed over sample sizes of 17, 32, 160

and 500. Rather than determine the improvement in factor analysis effectiveness as

sample size increased, we elected to explore the minimum threshold needed to facil-

itate reasonably accurate factor analysis. The flow diagram in figure 3.1 illustrates -

a general overview of the approach utilized in the analysis of each theoretical factor

pattern. The following section will address each step of this approach in more detail.
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Table 3.11. Level 1 Perturbed And Nuisance Loadings

Pattern 28- Pattern 29 Pattern 30
.9 0 0 ,0. .8 0 C .6 .7 0 0 0
.8 0.2 0 .7 0 00 .6 0.2 0
.7 .6 0 0 .6 .5 0 0 .5 0 0 0
.6 0 .4 0 .5 0 0 0 .4 0 .1 0
0 .8 .3 0 .5 .7 0 0 0 .6 0 0
.5 .7 0 0 0 .6 0 0 0 .6 0 0
0 .6 0 .2 0 .5 0 .1 0 .4 0 0
.2 .5 00 0 .4 .30 0 .3.1 0
0 0 .7 0 0 0 .6 0 0 0 .5 0
.5 0 .6 0 .4 0 .5 0 .2 0 .4 0
0 0.5 0 0 0.4 0 0 0.3 0
.2 0 .4 0 .2 0 .3 0 .1 0 .3 0
0 0 0 .6 0 .4 0 .5 0 0 0 .4
0 .4 0 .5 0 0 0 .4 0 .3 0 .4
.1 0 0 .4 0 .40 .3 0 0 0.3
0 .20 .3 0 0.1.3 .1 0 0.3

Table 3.12. Level 2 Perturbed And Nuisance Loadings

Pattern 31- Pattern 32 Pattern 33
.9 0 0 .4 .8 0 0 0 .7 0 0 .2
.8 0 0 0 .7 0 .6 0 .6 0 0 0
.7 0 .3 0 .6 0 0 0 .5 .4 0 0
.6\0 0 0 .5 0.4 0 .4 00 0

. 0.20.4 0 0 0 .3 0 .3 0
.00.3.2 0 0 .3 0 0 0

.3 0.30 0.3 0 0 .1
0 70.4 0 .6 0 0

.2 000.5 0 0 01 .4 0 0

0 .i 0 . . 0 0 0.1.50 0
0 . 40.4 0 0 0 .3 .10

0.4 0 00 .3 0 .3 0 .3 0 0
.2 .70 00 . 0.4 0 .5 0

0 0 .6 0 .1 0 .5 0 0 0 .4 0
0 .50 .6 0 00 .4 0 .2 0.4
0 00 .5 .20 0 '.3 0 0 0.3
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Table 3.13. Level 2 Perturbed And Nuisance Loadings

Pattern :34 Pattern 35 Pattern 36
.9 0 .3 0 .8 0 .2 0 .7 0 .1 0
.8 00 0 .7 0 00 .6 .5 00
.7 .6 00 .6 0.50. .5 0.2 0
.6 0 0 0 .5 0 0 0 .4 0 00
.5 0 .1 0 .4 .2 0 0 .3 0 .2 0
.4 0 C 0 .3 0 00 .3 0 0 0
.3 0 0 .2 .3 0. 0 .3 .3 .1 0 .2
.3 0 0 0 .3 0 0 0 .3 0 0 0
.3 01 .3 0 .3 0 .4 0 .3 0 .3 0
.3 0 0 0 .3 0 0 0 .3 0. .1 0
.3 .2 0 0 .3 .2 0 0 .3 0 0 .2
0 .8 0 0 0 .7 0 0 .4 .6 0 0
0 .70 .5 0 .60 .5 0 .5 0 0
0 0 .7 0 0 0 .6 0 .1 0 .5 0
.4 0 .6 0 .3 0 .5 00 0 .4 0
0 0 0 .6 0 0 0 .4 0 .2 0 .3

3.2 Data Generati~on

This section begins by outlining the procedure for deriving a covariance matrix

from each of the third-six theoretical factor patterns. Recall the basic factor-analytic

model introduced in chapter two,

X=Af+ e(31

where

X is a p x 1 vector of observed responses,

A is a p x q matrix of unknown constants (factor loadings),

f is a q x 1 vector of unobservable variables (common factors)

and
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e is a p x 1 vector of unobservable variables (unique factors).

Specifically,

A11  _ .'AiA l l A 19

A=

A ... Apq

Also recall that the j unique factors consist of the variance of each variable not

explained by any of the common factors. It is generally assumed that the unique

parts of each variable are uncorrelated. Further, the unique parts are uncorrelated

with the common parts

* 1  0 .. 0

0 T2 . ...

E eeT = 1P =

0 0 . . % p

These assumptions imply that the covariance matrix of X can be written as

EXX = At^T + T. (3.2)

where

3-12

I Il



I is as previously defined,

A is the original experimental factor loadings matrix,

and

021

031 '632 1

OlJ Op2 . . qq-1 1

where 4 gives the covariance between the common factors. When it is assumed that

the factors are uncorrelated, we have

• =1, (3.3)

hence

E:- AAT+ I,. (3.4)

Thus a population covariance matrix can be derived by multiplying the theoretical

factor pattern by its transpose and adding the diagonal matrix of uniqueness values

for each variable. Since the communality (that part of the variance accounted for by

the common factors) is
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h? Z (3.5)
I

The uniqueness of •acih ,i41i4 in .ga &u m.'L-,uIzal matrix can I-- cIlcilated as

=, 1- h? (3.6)

Therefore,

The next step in the experimental procedure was to generate N(sample size)

sample vectors of length 16 (number of variables). Since the individual components of

each sample vector are obviously not independent,we generated each random vector

from a joint (multivariate normal) distribution to form a vector of correlated random

normal variates. Each covariance matrix is positive definite and can be factored into

an upper and lower triangular matrix using Choleski decomposition

E C CT (3.8)

For a more detailed mathematical explanation of Choleski decomposition, see (Bur-

den and Faires,1989:370). After the covariance matrix was factored, we generated

random multivariate normal deviates

3-14 '

- " -// :.... .



• /

.7. ,

P
x, = (3.9)

where

i=1, ...,1P

and

x = (X,,...x) ~ NP(0o, (3.10)

A FORTRAN program (see appendix A) utilizing routines CHFAC (IMSL,

1987:1144) and RNMVN (IMSL,1987:1033) was written to read a selected covari-

ance matrix, perform Choleski decomposition and return 100 sets of N(sample size)

1 x 16 multivariate normal deviate vectors. These data sets were then factor an-

alyzed using the SAS (see appendix C) principal components method. SAS was

used because we experienced problems with the FACTR routine (IMSL, 1987:647)

returning consistent results. The Monte Carlo technique was implemented in our

main FORTRAN program (see appendix D) which used the FROTA routine (IMSL,

1987:656) to return rotated factor patterns for both the raw and normal varimax

criterion. There were also problems with the FROTA routine in that the columns

of the rotated output were not in the correct order with respect to the eigenvalues.

Because of the greater flexibility this routine provided, we decided to use it and

createi a sort routine in our main program to rewrite the common factors of each

rotater! factor pattern in the correct (largest eigenvalues first) order. Theoretical

factr pattern characterization parameters, rotation measures of effectiveness, and

-.t! tiStiC3 t vere calculated in this program.
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3.3 Pattern Characterization

Selecting a method that quantifies the fundamental features of a large group

of theoretical patterns over a large range of loading structures and communalities

was a difficult process. For this effort the researcher relied primarily on three such

metrics. They were the

* Stability Ratio

* Complexity index

* Uniqueness index

The stability ratio concept was proposed because it mathematically separated the

theoretical factor patterns into three levels of complexity based upon eigenvalue

divergence. Patterns where most of the variables load on one factor will display a

very large ratio of highest to smallest eigenvalue, thereby incurring a high stability

ratio. Conversely, theoretical factor patterns with equal variable loading will have a

stability ratio close to 1. Used in this manner, the stability ratio will provide a means

of quantifying Kaiser's concept of structure complexity. Since eigenvalue divergence

is a function of the factor pattern columns, we will call this component of structure

complexity the column effect.

--.a (3.11)Lmi-

In addition to eigenvalue divergence, There are several promising methods

for quantifying factor pattern complexity. Bauer explains complexity in terms of

the difficulty for a factorization technique to extract the first factor over the second

(Bauer, 1981:39). In other words, the total variance explained by the first two factors

are so close in value, the extraction algorithm has difficulty discerning between the

two. He proposed a complexity index combining two structure parts that he called
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*Complication due to structure

*Complication due to uniqueness

The first component of the complexity index takes the form

Ei'=1 Ej=2 Ek1CAikkAi) 2  (3.12)

This term (structural complexity) suggests that factor patterns with variables loaded

equally on all variables will exhibit large complication due to structure with a weak

upper bound of 1, while patterns with all variables loaded on one factor will display

very low complication due to'structure with a tower bound of 0. Inspecting the

formulation, we can see that this component is a function of the factor pattern rows

and columns. We will call this component of structure complexity the geometry

effect. The second part of Bauer's complexity index,

Il- ~ hi (3.13)

is the average uniqueness of the experimental factor pattern. Simply put, the lower

the uniqueness of a given variable the higher the variance (communality) explained

by the common factors. With less variance due to uniqueness (error), a rotation

technique has a better chance of recovering the representative factor pattern. We

will refer to uniqueness, a function of the rows (variables), as the row effect. In an

effort to isolate these two effects, we will perform separated calculations for these

two parts. A primary objective of this effort will be to determine if any single effect

or interaction of effects can provide accurate prediction of factor pattern behavior.
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.9.4 Measures Of Effectiveness

Three primary areas were addr-essed to explore the accuracy of the two varimax

criteria.

9 The ability to recover the experimental factor pattern structure

* The ability to recover the variable loadings for the experimental factor pattern

e The ability to recover the total variance explained by each factor (eigenvalue)

in the experimental factor pattern

Each observed rotated structure was compared to its associated experimental struc-

ture to determine the number of times our observed pattern loaded a variable on the

same factor as the experimental pattern. This was accomplished by assigning a value

of 1 to the most significant factor loading of every variable in each experimental fac-

tor pattern and a zero value to all other. loadings. This same binary transformation

was also performed on each rotated sample factor pattern. The experimental struc-

tures were then compared to the M=24 permutations of the j=4 factor columns of

its respective rotated solution, scoring the highest number of achieved matches. The

scoring calculation is

max tr [AT A.)1 (3.14)

where

A. is the experimental factor pattern

and

A.t (n=I,...,24) are the permuted rotated factor patterns.

The permutations were performed to ensure the study compared only the best possi-

ble form of each rotation criterion. Additionally, this same procedure was conducted
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on each extracted unrotated factor pattern to contrast its accuracy to that of the

two varimax rotation criterion

Variable loading recovery was measured by calculating the root mean square

residuals between each rotated variable loading and those of its parent experimental

factor pattern as

S_-i - A!-)2 (3.15)
'pq"

where

pq is the total number of factor loadings,,

M. are the experimental factor pattern loadings

and

A!. are the best permuted factor pattern loadings.

Eigenvalue recovery was measured in a fashion similar to that of the variable

loadings. We calculated the root mean square residuals of the eigenvalues between

each rotated variable loading and its parent experimental factor pattern. This is

calculated as

q (L; - (3.16)
q

(3.17)

where
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q is the total number of eigenvalues,

Lj are the experimental factor pattern eigenvalues

and

L are the best permuted factor pattern eigenvalues.

It must be noted that in each of the residual calculations, the rotated factor pattern

was the permuted pattern that produced the highest matching score. Again, this was

to ensure that residuals were calculated for the best possible rotated representation.

All measures of effectiveness were averaged over N=100 data sets from thirty-six

different populations corresponding to each experimental factor pattern to establish

a grand mean for all measures of effectiveness.

8.5 Regression Analysis

Several regression studies will be conducted to determine if rotated pattern

matching score, factor loading error and eigenvalue error can be predicted as func-

tions of sample size, stability, uniqueness and complexity. Each of our measures

of merit were taken as the grand mean of 100 iterations for the different experi-

mental structure-sample size combinations. Two types of regression models will be

investigated.

1. A linear regression model for predicting measures of effectiveness using a step-

wise procedure. Three formulations of this model will include pattern matching

score, root mean square residual loadings (RMSR), and root mean square resid-

ual eigenvalues (RMSER) as response variables. Each response will be modeled

as a linear function of stability ratio, uniqueness index, complexity index and

all possible multiplicative interaction terms.
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2. A nonlinear model will also be attempted for predicting measures of effective-

ness using a stepwise procedure to fit a Cobb-Douglas function. This will enable

us to capture any nonlinearities greater than first or second order that may

be present in the data. This model will also include three formulations usiug

pattern matching score, RMSR, and RMSER as response variables. The inde-

pendent variables will include stability ratio, uniqueness index and complexity

index as independent variables.

The general approach for the regression analysis will be to first attempt a linear

model of each response variable for the smallest sample size, 17. Our criteria for an

acceptable model will be any one that explains 80 % of the variance of the response

variable as indicated by the adjusted r2 value. If this model is unacceptable, the

sample sizes will be successively increased until the largest, 500, has been modeled.

If according to our criterion, the model is still unacceptable, we will attempt to fit

a Cobb-Douglas function to the response determined by the smallest sample size.

This procedure will also bring in larger samples until all sample sizes are exhausted

or an acceptable model is obtained.

3.6 Factor Analysis

Finally, our analysis will conclude with preliminary factor analysis on three

data sets consisting of the following groups of variables.

1. The set of variables measuring matching scores for the raw and normal varimax

factor patterns, and the unrotated factor pattern.

2. The set of variables measuring RMSR for the raw varimax, normal varimax

and unrotated factor patterns.

3. The set of variables measuring RMSER for the raw varimax, normal varimax "

and unrotated factor patterns.
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In addition to generating factor patterns, we will also examine some two-factor plots.

This analysis will a visual perspective of the interrelationship of each experimental

factor pattern. In order to remain consistent, sample size corresponding to the data

set yielding the best regression model for each experimental factor pattern will be

the one factor analyzed.

3.7 Summary

This concludes the me'hcodology discussion for this research effort. This chap-

ter covered data. generation, the Monte Carlo approach, independent predictor cal-

culations and response measures of effectiveness calculations. The next chapter will

detail the results of this approach.
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IV. Results and Conclusions

4.1 Monte Carlo Approach

The Monte Carlo method was applied to assess the accuracy and associated

properties of the raw and normal varimax criterion for rotation in factor analysis.

In all, three different levels of structure complexity we're used:

* Level 1: Variables loaded equally on all four factors

* level 2; Variable-, predominantly loaded on the first two factors

* level 3: Variables predominantly loaded on the first factor

Each level of structure complexity was invebtigated over a range of average corn-

mnunality and nuisance loadings. As defined in the previous chapter, several factor

pattern descriptor variables and measures of effectiveness were proposed to predict

rotation criterion performance. Recall that we are defining factor pattern complexity

in terms of row, column and geometry effects and that the~se effects will be estimated

as a. function of the predictors. Our set of experimental factor patterns were con-

trived to display a range of each effect. In Figures 4.1, 4.2 and 4.3 we have sorted

the set of experimental factor patterns in ascending order of stability ratio, unique-

.--ness index and complexity index to illustrate the experimental range of each effect.

Based on the analysis of these metrics, several conclusions have been drawn.

4.2 Pattern Matching

Perhaps one of the most important measures of effectiveness regarding any ro-

tation criterion is the ability to restore the true underlying factor pattern structure.

The observed structures for the unrotated and both rotated (raw and normal vani-

max) factor patterns were compared to each of their associated experimental factor

patterns to determine a pattern matching score. That score is the number of times

the experimental and observed patterns both load a variable on the same factor.
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Figure 4.2. Experimental Factor Pattern Uniqueness Index Range
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Figure 4.3. Experimental Factor Pattern Complexity Index Range

The pattern matching score was the highest matching total recorded for each of the

twenty-four permutations of the four columns in each observed factor pattern. This

ensures consistent comparison of the best possible observed factor pattern structure.

4.2.1 Exploratory Scatter Plots. Figures 4.4, 4.5 and 4.6 show initial

scatter plots of the matching scores against each complexity effect.

We can clearly see from Figure 4.5 that matching score as a function of uniqueness

displays the most conclusive relationship of any predictor variable. Upon closer in-

spection, their appears to be four different processes taking place. First, there is

a general trend toward lower matching scores for the observed unrotated and ro-

tated factor patterns as the average uniqueness of the experimental factor pattern

increases. Second, the scatter plot convergeb with increased uniqueness, indicat-

ing no difference between unrotated and rotated matching scores at high levels of

uniqueness. Furthermore, we can see that the raw and normal varimax rotation

criterion achieve the same matching score at all levels of uniqueness. Finally, Fig-
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!Figure 4.4. Stability Ratio vs Pattern Matching Score For Sample Size N=17
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Figure 4.5. Uniqueness Index vs Pattern Matching Score For Sample Size N=17
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Figure 4.6. Complexity Index vs Pattern Matching Score For Sample Size N=17

ure 4.5 shows unrotated factor patterns of the same uniqueness exhibiting distinctly

different matching scores. The significance of this difference decreases as uniqueness

increases. To understand what is causing this response, we must refer to the un-

rotated matching scores ranked according to uniqueness index shown in Table 4.1.

This Table shows us that at any given uniqueness, 0.190 for example, higher stabil-

ity ratios produce a higher matching scores for an unrotated factor pattern. While

-. the scatter plots of stability ratio and complexity index do not show any conclusive.-'-- - '- '

relationships, they do indicate that there is no difference between the two varimax

criterion in response to column or geometry effects

4.2.2 Regression Analyjsis. A regression analysis was then performed on

the observed matching score for the unrotated and both rotated factor patterns to

better understand the influence of column, row and geometry effects as measured by

the predictor variables. In addition, a successful regression model will determine if

pattern matching scores can be predicted. In this analysis, pattern matching score
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Table 4.1. Unrotated Matching Score As A Function Of Uniqueness Index

Structure Stability Uniqueness Score
1 1.000 0.190 10.1
13 3.500 0.190 13.7
25 11.000 0.190 14.9
26 24.750 0.279 14.7
14 7.875 0.339 13.8
5 1.000 0.360 10.0

17 3.500 0.360 12.8
29 11.000 0.360 14.5
2 2.250 0.425 10.5
30 28.160 0.438 14.3
18 14.000 0.502 12.8
9 1.000 0.510 9.6

21 3.500 0.510 11.6
33 11.000 0.510 13.5
4 3.211 0.523 8.8
16 3.097 0.561 9.7
6 2.560 055 9.6

34 33.687 0.577 13.1
28 5.108 0.581 9.2
3 2.674 0.615 9.3

15 4.590 0.615 10.0
22 10.719 0.622 11.6
8 2.281 0.629 8.4
27 8.778 0.656 9.2
20 4.580 0.668 8.9
10 3.062 0.685 8.8
32 5.060 0.686 8.6
7 2.949 0.722 8.6
19 8.320 0.732 9.1
31 15.250 0.746 8.9
36 12.118 0.766 8.0
24 5.667 0.771 8.0
12 2.000 0.776 8.3
11 2.520 0.799 8.1
23 6.120 0.804 8.4

1 35 21.000 0.812 8.2
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was taken as the grand mean of 100 sample pattern matching scores obtained from

each experimental structure-sample size combination. Using .80 as the target ad-

justed R2 value, we first performed a linear regression on the smallest sample size

combination (N=17) and incremented the sample sizes until reaching our target. If

the largest sample size combination (N=500) failed to reach the target, the proce-

dure was repeated with a Cobb-Douglas type function. In the case of factor pattern

matching scores, a satisfactory linear regression model for each observed fa:tor pat-

tern was obtained with the smallest sample size. The independent variables in each

model consisted of the stability ratio, uniqueness index, complexity index,. all two

variable interaction terms and the three variable interaction term. Table 4.2 summa-

rizes the adjusted R 2, mean square error, entering variable coefficients and variable

significance for each model.

According to the adjusted R2 and mean square errors, the three models appear

to predict matching scores reasonably well. The residutl plots (Appendix E) also

indicate a high degree of model aptness. Note in Table 4.1 that Uniqeness2 is the

second most significant independent variable in each model. However, in the model

for unrotated matches, Uniqueness 2 is much less significant than in the models for

our raw and normal varimax criterion. Further, the significance of this particular

independent variable is nearly equal for the two rotation criterion. In fact, the

raw and normal varimax models are very similar in terms of main and two-factor

interaction effects. Also note that Stability is nearly as significant as Uniqueness 2

in the unrotated model but very small relative to Uniqueness 2 in either rotated

model. The coefficients of Uniqueness2 and Stability in each model also indicate that

matching scores for rotated factor patterns are influenced by row effects (uniqueness)

to a greater extent than unrotated factor patterns. Conversely, matching scores for

unrotated factor patterns are influenced by column effects (stability) much more

than the rotated factor patterns. Also shown are very large negative coefficients for

complezity in all three models. Evidently complexity in terms of geometry has a large

4-7
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Table 4.2. Linear Regression Models For Factor Pattern Matching Score

Variables Coefficients t-value,
Unrotated Const 11.707 26.96

Uniq2  -7.230 -6.70
Stab 0.408 5.33

Comp -65.006 -- 3.05
Stab2  -0.005 -2.84

ST * Un -0.266 -2.57
R' =.88 MSE =0.614

Raw Const 16.644 5. 6 3
Uniq 2  -13.014 -22.17
Comp -251.750 -4.61
Stab. -0.032 -2.34

come2  5639.798 2.32
R' =.95 MSE =0'396

Normal Con at 16.675 65.32
Uniq2  -13.190 -22.43
Comp 2  9619.153 3.17
Cornp -237.73 -3.09
Sta ~ -0.032 -2.37

St *Uný* CO 153.611 2.29
St*CO -115.069 -2.21

Rz .P 1MSE =0.386

/4
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influence on factor pattern recovery. Since geometry can be considered a combination

of the row and column effects that have already been found to be significant in each

model, this makes intuitive sense. It is interesting that stability and uniqueness are

present as an interaction term in the unrotated model. The results of this regression

analysis seems to support our initial conclusions based upon the exploratory scatter

plots.

4-2.3 Factor Analysis. A factor analysis was performed using the un-

rotated, raw, and normal factor scores as our observed variables. Three variables

limited our dimensionality to three possible latent factors. Factor analysis was ac-

complished to determine if our initial conclusions about the relationship between

pattern recovery and the three complexity effects were correct. If these conclusions

are in error, factor analysis can help identify the presence of other effects not cap-

tured by our predictor variables. After extracting the common factors, the factor

pattern was rotated using the normal varimax criterion. This rotated factor pattern

is illustrated in Table 4.3.

Table 4.3. Rotated Factor Pattern For Matching Score

h f2 f37~
Unrotated I.422 .906 .000

Raw I.9061.422I-.0161
Normal .90j .42L .16

The structure indicated by the bold faced factor loadings shows the observed match-

ing scores for the raw and normal varimax criterion to be strongly influenced by

the same underlying process. Observed matching scores for the unrotated factor

pattern are influenced just as strongly by a different, independent process. It would

be reasonable to infer that uniqueness is the underlying process associated with the

rotated matching scores, while stability ratio is a similar underlying process for Un-

rotated matching scores. The two- factor plot (Appendix F) graphically illustrates
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this relationship. The cluster comprising group I are characterized by high stability

ratios, while that of group II are characterized by very low average uniqueness.

4.2.4 Conclusions. Based upon the preceding analysis we can conclude

That there is no difference between the ability of the raw or normal varimax rotation

criterion to restore a known factor pattern (of the type we sampled from). Also, the

difference between rotated and unrotated pattern recovery is negligible at high levels

of average uniqueness in the patterns. Finally, we saw that stability ratio heavily

influenced the unrotated factor pattern, while average uniqueness influenced the

rotated factor patterns. In all cases, the number of pattern matches were predictable

with a linear regression model at a very small sample size.

4.3 Factor Loading Residuals

In addition to pattern matching, our investigation also included each rotation

criterion's ability to recover the factor loading of each experimental factor pattern.

To address this performance area, we proposed using the root mean square residuals

(RMSR) of the observed factor loadings as a measure of merit. RMSR was calculated

for the permuted factor pattern that yielded the best pattern matching score.

4.3.1 Exploratory Scatter Plots. Figures 4.7, 4.8 and 4.9 show initial

scatter plots for RMSR agaiiiit each complexity effect. Unfortunately, none of these

scatter plots indicate any conclusive relationship between factor loading recovery

and the row, column or geometry effects. We can see that, regardless of the effect,

there is very little difference between residuals of the observed factor patterns for

the unrotated, raw varimax or normal varimax. The scatter plots for stability and

uniqueness show a very slight trend in which the residuals decrease with increasing

complexity in terms of column and row effects respectively. Intuitively, one would

expect to see the opposite trend. A regression analysis was conducted to see if
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we could gain further insight into the underlying process affecting observed factor

pattern loading residuals.

RMSR vs Stability Ratio
1.I I I I

unrotated 0
0.8 raw +

0.8 normal 0

0.6RMSR "

0.2

0 L f t l I

0 5 10 15 20 25 30 35 40
Stability Ratio

Figure 4.7., Stability Ratio vs Root Mean Square Loading Residuals For Small Sam-
ple Size N=17

4.3.2 Regression Analysis. As in the rcgression analysis conducted for

pattern matching scores, RMSR was taken as the grand mean of 100 RMSR samples

obtained from each experimental structure-sample size combination. Again using .80

as the target adjusted R2 value, we first performed a linear regression on the smallest

sample size combination and incremented the sample sizes until reaching the target

value. If the largest sample size combination failed to reach the target, the procedure

was repeated with a Cobb-Douglas type function. In the case of unrotated factor

pattern RMSR, a satisfactory linear regression model was obtained with the smallest

sample size. As for RMSR associated with the rotated criterion, we were unable to

achieve the desired adjusted R2 with the smallest sample size combination, and saw

no improvement at any of the larger sample sizes. When attempting to fit a Cobb-

Douglas function, we observed adjusted R2 values lower than had been achieved with
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Figure 4.8. Uniqueness Index vs Root Mean Square Loading Residuals For Small
Sample Size N=17

RMSR vs Complexity Index
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Figure 4.9. Complexity Index vs Root Mean Square Loadint; Residuals For Small
Sample Size N=17
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the linear model. Table 4.4 summarizes the adjusted R2, mean square error, entering

variable coefficients and variable significance for each linear model. The independent

,variables in each model consisted of the stability ratio, uniqueness index, complexity

index, all two variable interactiou terms and the three variable interaction term.

Table 4.4. Linear Regression Models For Root Mean Square 'Residuals

Variables Coefficients t-value
Unrotated Const 0.552 35.64

Uniq -0.238 -8.77
Stab -0.006 -4.71

Comp -65.006 -3.05
ST * Un 0.006 2.66
R' =.81 MSE =0.0003

Raw Const 0.468 30.57
Uniq -0.118 -4.40
Stab -0.004 -3.31

ST * Un 0.005 -2.20
.R =.54 MSE =0.0003

Normal Const 0.448 42.19
Uniq -0.087 -4.93
Stab2  -0.0001 -4.02

R =.53 MSE =0.0003

According to the adjusted R' and mean square errors, the unrotated model

appears to predict RMSR very well. The rotated models show only a fair level

o RMSR prediction. Even so, the residual plots (Appendix G) indicate a high

d gree of aptness for all three models. Note in Table 4.4 that a Uniqeness term

is again the second most significant independent variable in each model. However,

in the model for unrotated matches, Uniqueness is twice as significant as in the

mo els for our raw and normal varimax criterion. Perhaps this variable has a greater

infl ence on the unrotated residuals, hence providing a better fit with the linear

mo el. The significance of the Stability variable is approximately equal in each

model. The coefficients of Uniqueness terms in each model indicate residuals for

rotated factor patterns are influenced by row effects (uniqueness) to a greater extent
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Table 4.5. Rotated Factor Pattern For Root Mean Square Residuals

EIJL fI f
Unrotated .497 .866 .033

Raw .865 .496 -.0731
Normal .836 .518 .179

than unrotated factor patterns. This difference is only relative, since the influence

in any specific model is very small. According to the coefficients for the stability /! .

terms, influence due to column effects (stability) is also very small. In every model,

the coefficients of both variables have negative values. This supports our initial

scatter plot observations where we detected a slight reduction in all residuals as

uniqueness and stability ncreased.

4.9.3 Factor Analysis. A factor analysis was performed using the unro-

tated, raw and normal loading residuals as our observed variables. Three variables

limited our 'dimensionality to three possible latent factors. Since the results of the

scatter plots and regression analysis were largely inconclusive, a factor analysis was

done to perhaps clarify the relationship underlying factor loading generation. Af-

ter extracting the common factors, the factor pattern was rotated using the normal

varimax criterion. This rotated factor pattern is illustrated in Table 4.5.

The-structure indicated by the bold faced factor loadings shows the observed

loading residuals for the raw and normal varimax criterion to be strongly influenced

by the same underlying process. Observed residuals for the unrotated factor pattern

are influenced just as Strongly by a different, independent process. Recall that this

is the same structure pattern identified in the factor analysis for factor pattern

matching score. Notice, however, the significance of these loadings has decreased. A

reduction in the influence of column and row effects has thus far been observed when

comparing the exploratory plots and regression models of the loading residuals to

those of the matching scores. As in the factor analysis for factor pattern matching
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score, it would be reasonable to infer that uniqueness is still the underlying process

associated with the loading residuals of our rotated criterion, and stability ratio is

again the underlying process for the unrotated loading residuals. It is interesting that

while loadings on the first two factors decreased, we saw a third factor beginning

to emerge. This may be in response to the geometry effect as measured by the

complexity index. In retrospect, a broader range of experimental factor pattern

complexity index might have answered this question. The corresponding factor plot

(Appendix H). The absence of any noticeable clustering of factor scores would seem

to indicate a complex relationship underlying tht ability of unrotated and rotated

varimax factor patterns to restore known experimental factor loadings

4.9.4 Conclusions. Although the preceding analysis was largely inconclu-

sive ,we can still make some broad generalizations. First, according to our RMSR *. -

criterion there is little difference between the ability JŽf the unrotated or either ro-

tated factor pattern to restore the factor loadings of the expeiimental factor patterns.

Second, all observed factor pattern loadings were influenced to a small extent by ex-

perimental factor pattern stability and uniqueness. Further, the uniqueness influence

was opposite of what we expected. While there appeared to be an additional effect S/

present, we were unable to conclude whether thi; was the effect due to geometry.

Finally, a linear model can predict the loading residuals for the unrotated factor

pattern fairly well, but only moderately so for the rotated factor patterns.

4.4 Eigenvalue Residuals

The final performance area explored in this study was the ability of the ob-

served factor patterns to restore the eigenvalues of each experimental factor pattern.

Recall from chapter 2, Kaiser's normal twvimax rotation criterion had a leveling ef-

fect on the eigenvalues corresponding to the rotated factor pattern in that it reduced

their divergence. This area was addressed similar to the factor pattern loading issue

by using the root mean square eigenvalue residuals (RMSER) of the observed factor
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loadings as a measure of merit. In the interest consistency, RMSEf". vas calculated

for the same permuted fac.or pattern that yielded the best pattern matching score.

4.4.1 Exploratory Scatter Plots. Figures 4.10, 4.11 and 4.12 show initial

scatter plots for RMSER against the column row and geometry complexity effects.

Obviously, the relationship between eigenvalue recovery and our chosen complexity

effects appears to be very complicated. As illustrated in the scatter plots, there is

no readily apparent, consistent residual response with respect to experimental factor

pattern stability, uniqueness or complexity. At is also tempting to conclude in general

that there is no substantial difference between the ability of the unrotated, or either

rotated factor patterns to recover the eigenv.lues of the experimental factor patterns.

However, the apparent complexity of the relationship between our measured effects

and eigenvalue residuals forces us to withhold this conclusion. A regression analysis

may simplify this relationship.

Stability Ratio vs RMSER
2.5 1 m

g unrotated 0
2 raw +Vofial 13

RMSER
1-m

0.5

0 I I
0 5 10 15 20 2.5 30 35 40

Stability Ratio

Figure 4.10. Stability Ratio vs Root Mean Square Eigenvalue Residuals Sample
Size N=17
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4.4.2 Regression Analysis. Consistent with all previous regression analysis,

RMSER was taken as the grand mean of 100 sample RMSER samples obtained from

each experimental structure-sample size combination. Still using .80 as the target

adjusted R2 value, we first performed a linear regression on the smallest sample size

combination and incremented the sample sizes until reaching the target value. If

the largest sample size combination failed to reach the target, the procedure was

repeated with a Cobb-Douglas type function. For the unrotated and both rotated

factor patterns, we were able to satisfactorily model RMSER with a linear regression

model using the smallest structure-sample size combinations. Table 4.6 summarizes

the adjusted R2, mean square error, entering variable coefficients and variable sig-

nificance for each linear model. The independent variables in each mondel again

consisted of the stability ratio, uniqueness index, complexity index, all two variable

interaction terms and the three variable interaction term.

Table 4.6. Linear Regression Models For Root Mean Square Eigenvalue Residuals

Variables Coefficients t-value
Unrotated Stab 0.344 8.10

St * Un -0.352 -6.26
Constant 1.515 4.28

Stab2  -0.002 -2.62
Unique -1.351 -2.23
R 2 =.88 MSE =0.1859

Raw St * Un -0.415 -10.59
Stab -0.364 9.26

Constant 0.737 4.26
Stab2  -0.002 -2.01

1' =.84 MSE =0.2054
Raw Stab -0.300 13.36

St * Un -0.407 -10.33
Constant 0.916 8.34
R' =.84 MSE =0.2092

We can readily see from the values for adjusted R 2 and mean square error that

all models explain most of the variance of the eigenvalue residuals. The corresponding
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residual plots (Appendix I) indicate we have an apt model. After accounting for

the relative small scale of the residual* axis and disregarding the obvious outliers,

we see that the variance of the residuals is fairly constant. A closer look at the

entering variables for each model, reveals several interesting, observations. Each model

incorporates similar independent variables and these variables are mostly interaction

terms. This explains why our exploratory factor plots were so difficult to'interpre~t.

Note that Stability or the interaction of Stability with Uniqueness -are the most

significant variables in each model. In addition, it is interesting that the coefficients

of each term are nearly equal in value but opposite in sign. Also note that no form

of the complexity index appears in any model. Despite these successful models, the___

influence of column, row and geometry effects is still not clear.

4.4.3 Factor Analysis. A factor analysis was performed using the unro-

tated, raw and normal eig~envalue residuals as our observed variables. Three vari-

ables limited our dimensionality to three factors. This analysis should -determine if

a simple structure is present in the residual eigenvalue data. After extracting the

common factors, the factor pattern was rotated using the normal varimax criterion.

This rotated factor pattern is illustrated in Table 4.7.

Table 4.7. Rotated Factor Pattern For Root Mean Square Residuals

_J f2 fL11h13I
Unrotated J.623 .761 .177j

Raw 1.6891.6741.2641
Normal .761 624L1.172 1

The structure indicated by the bold faced factor loadings is identical to that

of the factor analysis for matching score and loading residuals. However, in this case

we have a very complicated structure with near equal moderate loadings on adjacent

factors. Note that our third factor loadings are becoming more significant relative

to the first two factors. Based upon this structure and the many interaction terms

in the preceding regression analysis, we can not identify any meaningful, underlying
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relationship for the eigenvalue residual data. The absence of a simple structure indi-

cates our current metrics for measuring performance in terms of eigenvalue residuals

are insufficient. The factor plot for this analysis provides no additional insight into

the data structure, but it is included (Appendix J) for completeness. The absence

of any noticeable clustering of factor scores further illustrates the complexity of this

particular data structure
/

4.4.4 Conclusions. Although the eigenvalue residuals were predictable

with a linear regression model, these functions were very complicated and difficult

to interpret. Perhaps a different set of independent variables would enable us to

identify a simpler underlying structure. Complexity due to geometry may still have

some influence on eigenvalue residuals, but our narrow complexity index range does

not allow us to assess this possibility.

4.5 Summary

At the onset of this study we intended to investigate three issues with respect

to Kaiser's normal varimax criterion:

* How well does the normal varimax perform over a wide range of sample size,

structure complexity, variable communality and factor loading?

* In addition to restoring the known structure of an experimental factor pattern,

how effective is normal varimax in terms of returning variable loadings and

eigenvalues?

* With what types of data will normal varimax not outperform raw varimax?

9 Are there circumstances where neither rotation criterion is desirable?

Some of our measures of merit assessed these performance areas very well and

others were not so successful. In particular, pattern matching in conjunction with our

chosen predictor variables best described the response of pattern recovery and how
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it is influenced by different aspects of factor pattern complexity. Although RMSR
/"

and RMSER were very predictable, they did not allow us to identify a simple un-

derlying relationship with respect. to factor pattern loading and eigenvalue recovery.

We propose that perhaps these are not key performance areas and factor pattern

structure recovery should be considered of primary importance. In terms of factor

pattern recovery, we clearly saw that the raw and normal varimax criterion were

both influenced by factor pattern uniqueness and stability. At no time did we see

normal varimax outperform raw varimax in any performance area. Furthermore we

saw that at high levels of factor pattern uniqueness, neither rotated factor pattern

outperformed the unrotated factor pattern in factor pattern recovery. With more

study this final observation may provide valuable insight to the researcher conduct-

ing factor analysis. If during his analysis he finds no difference between the rotated

and unrotated factor patterns, perhaps the researcher can conclude that he already

has already identified the simple structure, or there is no simple underlying struc-

ture present in his data. At that point he should select a different set of measured

variables, extract a factor pattern, and rotate to determine which is the case.
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V. Recommendations

5.1 Future Research

Future studies on the sensitivity of factor analysis techniques should certainly

be pursued. The source code produced for this Monte Carlo study is well suited

to work beyond the scope of this effort. The idea of geometric complexity may

be valid, but the range of our complexity index was too narrow to really asses the

validity of this assumption. Future work should also address other methods for

characterizing factor pattern behavior. Additional performance areas must also be

addressed before concluding factor pattern recovery is sufficient for assessing rotation

criterion accuracy. Obviously, future efforts shotd also be expanded to include

rotation methods other than varimax criterion.

We focused on smaller sample sizes to explore the threshold for satisfactory

factor rotation. As measured by factor pattern recovery, this threshold. appears to be

lower than expected. Perhaps RMSR and RMSER are heavily influenced by sample

size. This should be answered. In addition, sample size should be investigated for its

effect on rotation reliability where reliability is determined by the standard deviation

of factor pattern scores.

In this effort we made a dimension~ality assumption by retaining four factors.

This was done to be consistent with Kaiser's dimensionality in his validation of

the normal varimax criterion. Different variable-factor ratios may have a significant

impact on factor rotation.

Recall that when calculating the pattern matching scores, we converted each

observed factor pattern to ones and zeros. This provided a simple method for calcu-

lating matching scores, but some information was lost. Two adjacent factor loading

may be very close in value, yet one will ultimately be changed to a zero loading. The

zero loading may have been the true significant loading in the experimental factor.



pattern and just missed being matched. These types of occurrences also need to be

considered.

Finally, the Monte Carlo method is a very valuable technique that should be

applied to research outside the field of factor ana lysis. Modern personal computers

and work stations make this approach readily accessible.
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Appendix A. Data Set Generation

A.1 FORTRAN code

This Appendix lists the FORTRAN code for generating the sample data. It

takes a covariance matrix,, performs a Choleski decomposition and generates 100

data sets of random multivariate normal deviates for experimental factor pattern

number one (in this case), smallest (N=17) sample size. The data file is formatted

as a 1700*4 matrix.

PROGRAM RANDOM
INTEGER I, IRANK, ISEED, J, K, LDR, LDRSIG, lOUT, NR, I
REAL R(17,16), RSIG(16,16),RCOV(16,16)

EXTERNAL CHFAC, REMVI, RISET, UMACH

CALL UMACH(2,NOUT)
NR-17
K =16
LDRSIG=16
LDR=17

*****OPEN THE FILE CONTAINING THE COVARIANCE MATRIX FOR EXPERIMENTAL****
*****FACTOR PATTERN 1, CALCULATED FROM THE PRODUCT OF THE LOADING*******
******MATRIX AND ITS TRANSPOSE. DONT FORGET TO HAVE ADDED THE DIAGONAL**
*****MATRIX OF THE UNIQUENESS VALUES. READ COVARIANCE MATRIX AND OPEK**
*****FILE THAT WILL HOLD 100 SAMPLE SETS OF RANDOM MULTIVARIATE NORMAL**

*****THE LEADING 6*6 SUB MATRIX OF THE COVARIANCE MATRIX IS SHOWN BELOW*

* 1. .81 .81 .81 0 0
* .81 1 .81 .81 0 0
* .81 .81 1 .81 0 0
* .81 .81 .81 1 0 0
* 0 0 0 0 1 .81
* 0 0 0 0 .81 1

OPEN 3,FILE='structure .dat')
READ(3,*), ((RCOV(IJ),J=1,K),I=1,K)
CLOSE(3)
OPEN(1,FILE='saaple.dat')_

*****CREATE DATA SETS INCREMENTING THE SEED WITH EACH SET****************

ISEED a 123457
DO 20 N=1 100
CALL CHFA6 (K, RCOV, 16, 0.00001, IRAINK, SIG, LDRSIG)
CALL RNSET(ISEED)
CALL RNMVN (1R, K, RSIG, LDRSIG, R, LDR)

*****RITE THE 100 DATA SETS TO OUTPUT F*LE***************************

WRITE (1,10) ((R(I,J),J=1,K),I=1,NR)
ISEED = ISEED+100

20 CONTINUE
10 FORMAT (1I,16F8.4)

CLOSE(l)
END

A-I
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*****THE LEADING 6*6 SUB MATRIX OF THE 16*1700 DATA SET IS SHOWN BELOW***
*

* 2.0516 1.5520 1.5405 2.0164 0.4144 0.1419
* 1.0833 1.1174 -0.0433 1.7127 1.2355 1.9269
* 0.0826 0.6900 0.1764 1.3174 0.9498 1.0576
* 1.2777 0.5152 0.1561 0.2775 0.9056 1.0729
* -1.2260 -0.7603 -0.6753 -0.6706 0.8173 0.6975
* 0.3385 0.4181 1.8470 1.1316 0.8911 1.3856

A
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Appendix B. Index Routine

B.1 FORTRAN code

This Appendix lists the FORTRAN code for creating an index vector for sub-

grouping the sample data file into 100 data sets having the appropriate number of

observations.

PROGRAM INDEX

INTEGER K, NR, I, I, L, E(16,1)

NI =16
K =17
T =K*NR

OPEN(18,FILE='index.dat',FORM='FORMATTED')

1=0
DO 200 L=1,100
DO 100 1=1,17

E(K,1)=I+I
WRITE (18,10) E(K,1)

100 CONTINUE
I=I+1

200 CONTINUE

10 FORMAT (13)
CLOSEC18)

END
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Appendix C. Unrotated Factor Pattern Generation

C.1 SAS code

This Appendix lists the SAS code for gererating the observed unrotated factor

pattern for each of the 100 sampled data sets. The data file produced by the data

generation code is merged with an index vector so we can factor analyze 100 sub-

groups corresponding to the appropriate sample size. For example, the data file for

the small sample size will be a 1700*16 matrix. The index vector will range from

1 to 100 with 17 iterations of each number. SAS will factor analyze the first 17

observations, second 17 observations and so forth, until it has factor analyzed 100

sets of 17 observations.

options linesize=78;
FILENIME NEW 'sample.dat';
DATA 111;

INFILE NEW;
input X1 X2 X3 X4 15 16 17 18 19 XO Ill 112 113 X14 115 116;

DATA 112;
INFILE 'indox.dat';
input index;

DATA 113;
merge XX2 I11;
proc factor data=X13 method=prin nfactors=4;by index;

- -------------------------------I-DE=I ----------------- -

Initial Factor Method: Principal Components

Prior Communality Estimates: ONE

Eigenvalues of the Correlation Matrix: Total = 16 Average = 1

1 2 3 4
Eigenvalue 6.2965 3.1123 2.8689 1.9385
Difference 3.1842 0.2434 0.9304 1.4314
Proportion 0.3935 0.1945 0.1793 0.1212
Cumulative 0.3935 0.5881 0.7674 0.8885

5 6 7 8
Eigenvalue 0.5071 0.4127 0.2698 0.2339
Di erence 0.0944 0.1429 0.0359 0.1125
Proportion 0.0317 0.0258 0.0169 0.0146
Cumulative 0.9202 0.9460 0.9629 0.9776

9 10 11 12
Eigenvalue 0.1213 0.1008 0.0560 0.0465
Difference 0.0205 0.0448 0.0095 0.0279
Proportion 0.0076 0.0063 0.0035 0.0029
Cumulative 0.9851 0.9914 0.9949 0.9978

13 14 15 16
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Eigenvalue 0.0187 0.0143 0.0027 0.0001
Difference 0.0044 0.0115 0.0027
Proportion 0.0012 0.0009 0.0002 0.0000
Cumulative 0.9989 .0.9998 1.0000 1.0000

4 factors will be retained by the NFACTOR criter:4.

Factor Pattern

FACTORI FACTOR2 FACTOR3 FACTOR4

x1 -0.53209 0.73981 0.14878 0.09028
X2 -0.50755 0.74434 0.02454 0.30341
X3 -0.56022 0.73031 0.16927 -0.07489
X4 -0.32998 0.82213 0.28371 0.11522
X5 0.63843 0.20186 0.39150 -0.49487
X6 0.64913 0.48773 0.23666 -0.47719
I7 0.48365 -0.12627 0.65814 -0.46377
X8 0.64715 0.26590 0.36936 -0.39919
X9 -0.48783 -0.17746 0.73005 0.12092
X10 -0.59957 -0.34110 0.65957 0.11973
xll -0.64469 -0.30897 0.58889 -0.02810
X12 -0.70671 -0.33157 0.56528 0.07712
X13 0.70811 0.27420 0.14132 0.51245
X14 0.76861 -0.00551 0.31612 0.51030
X15 0.82272 -0.07591 0.30864 0.43758
X16 0.76217 0.04723 0.32964 0.47136
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Appendix D. Monte Carlo Routine

D.1 FORTRANý code

This Appendix fists the FORTRAN code for the Monte Carlo method used

in this research. The program reads the experimental factor patterns and the SAS

generated unrotated factor patterns. It utilizes a loop to read 100 observed unrotated

factor patterns that have been stored in one file by reading the first 1-16*4 factor

loadings, the second 17-32*4 factor loadings ect. It then calculates all predictor

values, performs the raw and normal varimax rotations and calculates all measures.

of merit. The measures of merit are taken at the grand mean of the 100 observed

foactor patterns of each type (unrotated, raw and normal) produced from every

experimental factor pattern.

INTEGER LDA, LDD, LDT, NAXIT. XF. NORM, RVAR, X,
& F. RO3W, COL, SAMPLE, S. STR-,.

* SUMI, SUMP, SUMIR, SUMPR, SUMIK, SUMPK,
& RUN, HRW, HKI, COUNT

REAL EPS, W. SR, ESR,PESR,AMESR,
& SESR, RSESR, KSESR, AIRBITS, ABRHITS,
& 531, RSSR, KSSR, AIIHITS, AIBHITS,
& ANSR, AIKHITS, ABKHITS, RAMESR, RAMSR,

a KAMSF, TOTSIROW, STRAT, HINDEX, PAMESR,
a CINDEX, THIEDEX, PAMESR, PKAMESR. PRAMESR,
& PSESR, PRSESR PAMSR PESR
& PESR, USSE, S6 UM. UASM, 9DUM, RSSE, SDRE,
& RSSM, SDRM, KSSE, SDKE, KSSM, SDKM ,UUSSE,
a SDUE, SDUUE.PUSSM,PSDUN,URSSE,USDRE,PRAMSR,
A PRSSM,PSDRM ,KAMESRUKSSE,USDKE,PKSSM ,PSDKM

PARAMETER (EPs=o.o, DA=16, LDE=16, DT=4, MAXIT=30,
& IF=4, IORM=K, NVAR=16, V1=1.0, WDD=160,
& SAMPLE=100)

REAL A(LDA,IF), BCLDB NF), T(WN.F),
& LOAD(NVAR,NF), C616,4).
a PRNUMCI6.4 SAMPLE), PN~INUMi,4 SAMPLE)
a RNUN(16 4,gAMPLE), UNIQ(16): 0XKNUMC1,4.SAMPLE),
& TOTH( 163 ,NNUM(1 4 SAMPLE), Kltm(1, 4, SAMPLE), INuM(4).
A 1(16 4 SAMPLE),'R?16,4),ERCI 4 SAMPLE),
a PRMt16,4,24), PER( 1,4,SAMPLi S, PRER(1,4 SAMPLE),
* P ESR(SAMPL) MSR (SAMPLE). PKMESR(SAMPLEJ,aXNSR(SAMPLE), PRMESR(SAMPLE) RMSRý! SMPL,

I '(I' (S

a ESR(SAMPLE), PER(1,4SAMPLEi PXSR SAMPLE)
a RER(1 4 SAMPLE), RMESR(SAMPLES, PRMESR(SAMPLE),
a PRMSRtSIMPLE) ,KM-ESR(SAMPLE) ,PKMSR(SAMPLE),
a CB(16,0),'KC16,4)

INTEGER D(16,4). TRLOAD(4,16). PRLOAD(4.4.24),
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SNUMHITS(24 SAMPLE),U(16,4.24), RV(16,4,24),

& KV(16,4,24)

EXTERNAL FROTA, WRRRN

F=O

******CREATE THE DATA FILE ALL STATISTICAL OUTPUT******************

OPEN( UNIT=26, FILE='out.dat')

******OPEN AND READ THE DATA FILE COVTAINING THE EXPEAIMENTAL******
******LOADINGS MTI**********44****** *~****

OPEN(lFILE='in.dat')
READ(1,*), ((LOAD(I,J),J=1,NF),I=,NVAR)
CLOSE(1)

******CALCULATE THE STURCTURE INDEX FOR THE EXPERIMENTAL LOADINGS**
******MATRIX**********************************

CINDEX=O.0
TOT3IROW=O.O
DO 822 I=1.16
TOTSIROW=TOTSIROV+((LOAD(I,1)*LOAC(I 2))**2+(LOAD(I,1)*LOAD(I,3))**2

A +(LOAD(,1) *LOAD(1,4))**2+ (LOAD(I,23 *LOAD (I,3))**2
& +(LOAD(I,2)*LOAD (1,4)) **2+ (LOAD (1,3) *LOAD (14)) **2)

822 CONTINUE
CINDEX=TOTSIROW/16.0

******CALCULATE THE UNIQUENESS INDEX FOR THE EXPERIMENTAL LOADIWC!**

THINDEX=O.O
DO 932 I=1,16

UNIQ(I)=O.0
TOTE(I)=O.O

932 CONTINUE

DO 842 1=1,16
DO 832 J=1,4

TOTH(I)=TOTH(I)+(LOAD(T.J)**2)
832 CONTINUE

UNIQ(M)=I-TOTH(I)
THINDEX=THINDEX+UNIQ(I)

842 CONTINUE
HINDEX=THINDEX/16.0

******CONDUCT BINARY TRANSFORMATION OF EXPERIMENTAL LOADINGS MATRIx***

DO 1021 I=I,NVAR
DO 1020 J=I,NF

D(I,J)=O
1020 CONTINUE
1021 CONTINUE

DO 1032 I=1,NVAR
BIG=ABS(LOAD(I,1))
LOCBIG=1
D(I,1)=1

DO 1031 J=2,NF
IF (ABS(LOAD(I,J)) .GT. BIG) THEN

D(I,J)=I
D(I:LOCBIG)=O
BIG=ABS(LOAD(I,J))
LOCBIG=J

END IF
1031 CONTINUE
1032 CONTINUE

******IF DESIRED, LOADINGS MATRIX OF 1'S AND O'S CAN BE WRITTEN OUT*i*
* PRINT*,'SIMPLE STRUCTURE PATTERN'
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* PRINT*
W RITE(*,14)((D(I.J),31.UNF).1=1,16)

* PRINT*

* VRITE(26,*)*

* RITE(26,7000)
*7000 FORJIAT(21X,'INKITIAL FACTOR PATTERN')

* VRITE(26.*)' I

* RITE(26.7001) ((D(IJ).Jml.IF).I=1.16)
*7001 FORMAT(221 .414)

******CALCULATE THE TRANSPOSE OF THE INITIAL STRUCTURE SO PATTERN*****
**$***MATCHING SCORE CAN BE CALCULATED********************************

COLzl
DO 1132 I=1,NF

ROW= 1
DO 1131 3=1,NVAR

TRLOAD(I,J)=D(ROV,COL) .-

ROW=ROW+ I
1131 CONTINUE -

COL=COL+ I
1132 CONTINUE

******CALCULATE EIGENVALUES OF INITIAL LOADING STRUCTURE**************

DO 900 J;1,NFA
INUN(J)=O.O

DO 800 I=1,NVAR
INUN(J)=INUM(J)+LOADCI.J)**2

800 CONTINUE
900 CONTINUE

*.******CALCULATE STABILITY RTO******************

STR.ATO. 0
STRAT=STRAT+ABS(IVNM(1 )/INUMC4))

****.**AT THIS POINT. ALL THE EXPERIMENTAL FACTOR PATTERN HAS BEEN*****
******ANFD ALL PREDICTOR VARIABLES HAVE BEEN CALCULATED****************

**.*s*INITIATE LO**************************
******HERE WE INITIATE THE LOOP FOR READING IN 100 SAMPLE UNROTATED****It'i

__ ******FACTOR PATTERNS GENERATED IN SAS, CALCULATE OUR MEASURES*********-- ......
- ******MERIT, AND STATISTICS**********************.**.************.**e...

******WE MUST ALSO INITIALIZE ALL OF OUR STATISTICS********************

SUMP20
SUMIZO
SUMPR=0 -

SUMIRO0
SUMPK=O
SUNIK=O
IUN~o
HRV=O

SESRz0.0
SSR=0.0
RSESRO0.0
RSSR=0.0
KSESR=0.O
KSSR=0.0
PSESR=0.0
PRSESR=0.0
PKSESR=0.0

******OPEN FILE AND READ THE 100 UNROTATED SAMPLE FACTOR PATTERNS~**s**
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******GENERATED FROM EACH OF OUR Z=36 EXPERIMENTAL FACTOR PATTERNS****

OPEN(2,FILE=INITIAL(Z))

DO 300 S=1,100

READ(2,*), ((A(I,J),J=I,NF),I=I,NVAR)

******(A(I,J) IS OUR SAMPLE UNROTATED FACTOR PATTERN****************** A

******GENERATE PERMUTATIONS OF OUR SAMPLE UNROTATED FACTOR PATTERN****
******IN PREPARATION FOR DETERMINING BEST PATTER HATCHING SCORE*******

DO 2001 1=I,NVAR
DO 2000 J=I,NF
PERM(I,J,1)=A(I,J)

2000 CONTINUE
2001 CONTINUE

DO 2002 I=1,16
PERM(I1.I2)1=A(11:1
PERM(I,2,2) A (1 2)
PERM(I,3.2) =A (14
PERM (1,4,2) =A (1,3)

2002 CONTINUE

DO 2003 I=1,16
PERM (I,1,3) A (,1)
PERM(1,3,3) =A (1,2)
PERN(I,4,3 =A(I,4)

2003 CONTINUE

DO 2004 I=1,16
PERN (I 1,4)=A(1,1 )11
PERM (1,2,4)=A(I,3)
PERM (,3,4) =A(I,4)
ERM (1,4,4) =A(I,2)

2004 CONTINUE

DO 2006 I=1,16PERN(I,1i, 5) =A (1o 1)PERMlI,218 A I,11
piR (1,2,5) =A (1,4~
PERM (1,3,5 =A (1,2)PERM (1 .4 ,5)=A(I,3) -

2005 CONTINUE

DO 2006 1=1,16
PERM(I,1,6)=A(I,1)
FERM(1,2,6) =A (1,4)PERN I,,63= I,3 '
PEPJI(I,4,6):A(I,2) 1"

2006 CONTINUE

DO 2007 1=1,16 "
PERM(I,1,7 Z=A( ,2)1
PERN(I,2,',-A(I,1)
PLRN(I,4,7) =A (1,4)

2007 CONTINUE

DO 2008 1=1,16
PER M (I,1,8)=A(I,2),
PER• 1(,2,) =A (1,)
PFERN(1,3,8) =A (1,4)
PERM(I.4,8) =A (1,3)

2008 CONT NUIE

DO 2009 I=1,16
PERrl(1,1,9)=A(I,2)
PERM (1,2,9) =A (1,3)
PERM(1,3,9) A 1,1)
PERM(1.4.9) a(1A4) /
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2009 CONTINUE

DO 2010 1=1 16PERM I 1 10 =A(I,21 

-

PERM (1:2,10 =A (123P E R K ( I,2 ,10 ) =A (1 ,3 ) •- .....

PERM(1 3,10) =A (1,4)PERM (I ,4 ,10 )=A I,1 ).

2010 CONTINUE

DO 2011 I=1 16
PERMKI A1111) A(1,2)
PERM(Z.2,11)= (=,4)
PERM 1 3 11) AI1PERM(1:4:11)=A 1 3)

2011 CONTINUE .

DO 2012 1=1 16
PERM( .X,12 =A( i,2)
PERM( I,2,12)=A :,4)
PERKM(1,3,12) =A (1,3
PERK1(Z,4,12)=A(I,1)2012 CONTINUE

DO 2013 1=1 16
PER M( ,1,1 3 :A(1,3)
PERM(I1,2.13) A(I,1)
PERM 1,3,13) =A ,2)
PERM(I,4,13)=A(I,4)

2013 COITINUE

DO 2014 1=1 16
PERM (,1,14 =A(I,3)
PERM(1,2.14 =A I,1)
PER(1,3,14) =A(I,4)
PERKM(1,4,14)=A(I,2)2014 CONTZINUE

DO 2016 I=1 16
PERM (I 1,161=(I,3)
PERM( 1,2,15)A( 1,2)
PERM(1,3,15)=A •1,)
PERM(I.4,15)=A(1,4)2015 CONTINUE -

DO 2016 1=1 16
PERK( 1,1,16 :A(1,:3)
PERK(I ,2,:16)A( 1,2)
PERM( I,3,16)=A( 1,4)
PERM(1,4,16)=A(1,1) . . ...

2016 COITINUE •--

DO 2017 1=1 16
PERII( 1,2,17)4I(I,4)

PERK 1,3,17)2(I,1)
PERK( 1,4,17) 1(1,2)

2017 CONTINUE

DO 2018 1=1 16
PERM(121,18)1:(!,3)
PERK (l,2,18)=(=14)PERN(I,3,18 )=4(1,2)
PERM(I,4,18) =(AI1)

2018 CONTINIUE

DO 2019 1=1 16
PEPJR(I,1 19J=A(I,4)'
PERM(1,2,19) =(1,1)
PERK•(1,.19) =(1,2)
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PERN(I,4, 19)=A(I,3)
2019 CONTINUE

DO 2020 I=1 16
PERM (I, I, 20)= A JI.)
PERK (1,2,20 =A (I, 1
PERK (1,3,20) =(1,3)
PERM((1,4,20) =A 1,2)2020 CONTINUE

DO 2021 1=1,16
PERK 1(,1,21 = (1,4)PER (1,2,21) =(I,2)
PERK(I,3,21 )=A 1,1)
PERM (1,4,21i)=,A (1,3)2021 CONTINUE

DO 2022 1=1,16
PERM (I, 1,22) =A (1,4)
PERM (1,2,22) =A(1,2
PERM (1,3,22) =A(1,3
PERM (1,4,22) =(I,1)2022 CONTINUE

DO 2023 1=1 16
*ERN(1,1,23 =A (1,4)
PERN• 1,2,23) =1(I,3)
PERM(1,3,23) =A I,1)
PERM 1.4,23) =(I,2)

2023 CONTINUE

DO 2024 =1. 16
PER(I, I, 24J=A(I,4)
PERN (1,2,24) =A 1,3.
PERM(I,3,24) =1(1,2)
PERM (1,4,24) =A 1,12024 CONTINUE

******PUT ALL PERMUTTED MATRICES INTO BINARY FORM IN PREPARATION TO****
******POST MULTIPLY THE TRANSPOSE OF THE EXPERIMENTAL FACTOR PATTERN***
******TO DETERMINE BEST FACTOR PATTERN SCORE***************************

DO 1093 1=1,24
DO 1081 I=2INVAI
DO 1080 J 1,NF

U(I,J,3)=O
1080 CONTINUE
1081 CONTINUE

DO 1092 I1=,IVAR
BIG=ABS(PERM(I,1, I))
LOCBIG=.U(I, 1,Nl)=1

DO 1091 J=2,IF
IF (ABS(PERN(I,J,H)) .GT. BIG) THEN

U(I,LOCBIG,)=0
BIG=ABS(PERM(I,J,H)
LOCBIG=J

END IF
1091 CONTINUE
1092 CONTINUE
1093 CONTINUE
**e***CALCULATE PATTERN MATCHING SCORE FOR EACH PERMUTATION OF SAMPLE***
**,*,#.,BSERVED UNROTATED FACTOR PATTEU****,*******************.*.**...
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DO 3000 H=1,24
DO 1142 I=1,4

PRI.OADCI,1.H)=O
DO 1141 J=1,NVAR

PRLOADCI, 1,H)=PRLOADCI.1,H)+(TRLOADCI,3)*U(J,1,H))
1141 CONTINUE
1142 CONTINUE

DO 1144 I=1,4
PRLOADCI,2,H)=O

DO 1143 J=1,NVAR
PRLODCDI,2,H)=PRLOAD(I,2,H)+(TRLOAD(I,J)*UCJ,2,H))

1143 CONTINUE
1144 CONTINUE

DO 1146 1=1,4
PRLOAD(I,3,H)=O

DO 1145 J=1,NVAR
PRLOADCI,3.H)=PRLOAD(I,3,H)+(TRLOAD(I.3)*U(J,3,H))

*1145 CONTINUE
1146 CONTINUE

DO 1148 1=1,4
PRLOIDCI,4,H)=O

DO 1147 J=1,NVAR
PRLOAD(I,4,H)=PRLOAD(I.4,H)-+(TRLOAD(1, 3)*UCJ,4,H))

1147 CONTINUE
1148 CONTINUE

NUNHITSCH,S)0O
DO 1149 I=1 4
NUIIHITS(H,S3=NUM ITS(H ,S)+PRLOAD(I ,I,H)

1149 CONTINUE

3000 COkTIw;JE

***ie*DETERMINE BEST PERMUTATION BY DETERMINING HIGHEST SCORING*****
***(NUMEITS) OF ALL PERMUTATIONS**********************************

NUN=NUMHITS(1 .5)
ID0O
DO 3500 H=2 24

IF (NUMHfTS(H,S) .GT. HUN) THEN
HIJN-NUMHITSCH,S)
ID-H

END IF
3500 CONTINUE

******e*IF WE ARE NOW WORKING WITS TEE LAST OF OUR SIMPLE*****i****
****W***UNROTATED FACTOR PATTERNS. CALCULATE THE AVERIGE**********
*******NUMNBER. OF MATCHES FOR THE SAMPLE**************************

SUMP=SUMP+EUN
IF (S .EQ. SAMPLE) THEN

AIBHITS=FLOAT(SUMP) /FLOAT(SAMPLE)
END IF

*.**..iCLCULATE EIGENVALUES BEST PERNUTTED FACTOR PATTERN******"*

DO 275 J=1,4
PRNUN(1,J,S)=O.O

DO 250 1=1 16
PRNUM(IJS) =PkIUN(1,J,S)+PERM(I,3,ID)**2

250 CONTINUE
275 CONTINUE

******CALCUJLATE THE EIGENVALUE RNSR FOR EACH BEST PERMUTED SAMPLE**
****UNROTATED SAMPLE FACTOR PATTERJ*********'.***'**.*.***********

DO 421 J=1,4
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PER(1,J,S)=(PRNUM(i,J,S)-INMUM(J))**2
421 CONTINUE

PESR=O.O
DO 427 J=1,4
PESR=PESR+PER(1.J,S)

427 CONTINUE

PNESR(S)=SQRT(PESft/4.0)

******CALCULATE THE LOADING RMSR FOR EACH BEST PERMUTED SAMPLE*****
UNROTATED SIMPLE FACTOR PATTERN****************************#

DO 134 1=1,16
DO 133 J=l 4

R(I, J)=KLOAD(I, J)-PERM(I,J,ID))**2
133 CONTINUE
134 CONTINUE

SR=O.O
.DO 136 1=1,16
DO 136 J=1,4

SR=SR+R(I,J)
135 CONTINUE
136 CONTINUE

PNSR(S)=SQRT(SR/(16*4))

*******IF WE ARE NOW WORKING WITH THE LAST OF OUR SAMPLE******&**
*******UNROTATED FACTOR PATTERNS, CALCULATE THE AVERAGE**********
*******EIGENVALUE RMSR FOR THE SAMPLE****************************

PANESR=O.O
DO 222 J=I,SAMPLE

PIMESR=PAMESR+PMESR(J)
222 CONTINUE

PAMESR=PAMESR/SAMPLE

******CALCULATE THE STANDARD DEVIATION OF THE EIGENVALUE*********
******RMSR FOR THE SAMPLE OF OBSERVED UNROTATED PATTERNS*********

USSE=O.0
DO 335 Jsl SAMPLE

USSE=US E+(PMESR(J)-FAKESR)**2
336 CONTINUE

SDUE=SQRT(USSE/(SAMPLE-1))

*******IF WE ARE NOW WORKING WITH THE LAST OF OUR SAMPLE*********
*******UNROTATED FACTOR PATTERNS, CALCULATE THE AVERAGE**********
*******LOADINGS RHSR FOR THE SAMPLE******************************

PAKSR=O.O
DO 965 J=1,SAMPLE

PANSRaPAMSR+PNSR(J)
956 CONTINUE

PAMSR=PANSR/SAMPLE

*****CALCULATE THE STANDARD DEVIATION OF THE LOADINGS***********
*****RISR FOR THE SAMPLE OF OBSERVED UNROTATED PATTERNS*********

PUSSN=O.O
DO 953 J3I,SAMPLE

PUSSM=PUSSN+(PNSR(J)-PAMSR)**2
963 CONTINUE

PSDUM=SQRT(PUSSM/SAMPLE)

END IF

******SET K TO 0 TO PERFORM RAW VARINAX ROTATION ON EACH OF THE****
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******OBSE.RVED SAMPLE UNROTATED FACTOR PATTERNS********************

K=O
CALL FROTA (IVAR, IF. A, LDA, NORM, MAZIT, V, EPS, B, LDB, T,

&LDT)

******CALCULATE EIGENVALUES RAW VARIMAX ROTATED FACTOR PATTERN******
******THE MUST BE DONE TO CALCULATE MEASURES OF MERIT AND TO ENSURE*
******THE ROTATED FACTOR PATTERN IS IN THE CORRECT COLUMN ORDER*****
******SEE CHAPTER III FOR DETAILS

DO 282 3=1,4
NIUM(iJS)=O.O

DO 267 1=1 16
NIUM(1,4,S)=NNUM(1,JS)+B(IJ)**2

267 CONTINUE
282 CONTINUE

s*****SORT EACH COLUMN OF THE EIGENVALUES OF THE ROTATED PATTER][****
****.*PUT FACTOR PATTERN COLUMN IN CORRESPONDING ORDER**************

BIG=O.0

DO 1121 J=1 NF
IF (NNUMt1,3,S) .GT. BIG) THEN

BIG=NNUM(1,J.S)
AA=J

END IF

1121 CONTINUE
NNIUM(1,AAS)=O.O

BIG=O.O

DO 1123 J=1,NF
IF (NNUMCI,J,S) .GT. BIG) THEN

BIG=NNUM(1,JS)
BB=J

END IF
1123 CONTINUE

NNUN(1 BB,S)=O.O
BIG=O.O6

DO 1126 3=1 IF
IF (NNUM 1,J,S) .GT. BIG) THEN
BIG=NNUM(1,J,S)
CC=J

END IF
126 CONTINUE

INUM(1 CCS)=O.0
BIG30.6
DO 1127 J=1,NF
IF (NNUM(1.J,S) .GT. BIG) THEN

BIG=nNUM(1J,,S)
DD=J

END IF
1127 CONTINUE

KNUM(1,DD,S) =O.O

*******REDEFINE ROTATED FACTOR PATTERN IN CORRECT FORM**********

DO 1128 I=INVAR
CD(I, 1)=B I(,)
CB (I,2) =B (I,B)
C ,3) =B (I,CC)
CB (I,4)=B (1,DD)1128 CONTINUE

******VRITE CORRECTED RAW TARIMAIX FACTOR PATTERN*****************
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S• PRINT*,'CORRECTED ROTATED RAW VARIMAX'
* PRINT*
* WRITE(*,1O)((CB(I,J),J=I,NF),I=I,LDB )
* PRINT*

******GENERATE PERMUTATIONS OF OUR SAMPLE RAW VARIMAX ROTATED*******
******FACTOh PATTERN IN PREPARATION FOR DETERMINING BEST PATTERN****

DO 2211 =I,NVAR
DO 2210 J=I,NF
PERN(I,J,1)=CB(I,J)

2210 CONTINUE
2211 CONTINUE

DO 2212 I=1,16
PER (1 1,2)1=CB (I,1)
PFR (1,2,2) =CB (1,2)
PERM(1,3,2) =CB 1,4)
PERM(1,4,2) =CB (1,3)

2212 CONTINUE

DO 2213 I=1,16
PER•U 1,3) =CB (,1)PEBRU(I,2,3) :CB (I,3)

PERM(1,3,3) =CB 1,2)
PERM(1,4,3) CB(I,I)

2213 CONTINUE

DO 2214 1=1,16
PERU.•,1I,41=CB(I,1)
PERM (1,2,4) CB 1,3)
PERM (1,3,4) CB 1,4)
PERM(1,4,4) CB (1,2)

2214 CONTINUE

DO 2215 1=1,16
PERM 1 ,1s)=CB(1, 1)
PERM (1,2,) CB 1,4)
PERM 1,3,) =CB ,2)
PERU(I,4,6) CB(I,3)

2216 CONTINUE

DO 2216 1=1,16
PERM(1,1,6)=CB (I1)
PERM 1,2,6) =CB (1,4)
PERM (1,3,6) =CB (1,3)
PERM (1,4,6) =CB(I,2)

2216 CONTINUE

DO 2217 I=1,16
PERM(I,1,7)=CB(I,2)
PER (1,2,7) zCB (,1)
PERM 1,3,7) CB 1,3)
PERU(I,4,7) =CB (1,4)

2217 CONTINUE

DO 2218 1=1,16
PEUJ(,1,8)=CB(1,2)
PERM (1,2,8) =CB I,1)
PERM (1,3,8) =CB (1,4)
PERM (1,4,8) =CB (1,3)

2218 CONTINUE

DO 2219 1=1,16
PER(I, 1,9)=CBT(,2)
PER (1,2,9) =CB I,3)
PERM (1,3,9) CB (I,1)PERU(I,4.9) =cB(,.4)

2219 CONTINUE

DO 2220 1=1 16PE RXý I, 1, lO) ý:C ( ,2)
PERU (1,210)=CB (1,3)
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PERM(1,4,10 =CBI,1)
2220 CONTINUE

DO 2221 1=1 16
PERM(I, 1,115=CB(I,2)
PERM (12,11) =CE (1,4)
PERMU 1,311 =CB1,13PERM(I,.4,11 =CB(1,3)

2221 CONTINUE

DO 2222 I=1 16
PERN (1,1,12 CB (1,2)
PERM 1,2,12) C (1,4)
PERM( ,3,12)=CB (1,3)
PER (1.4,12)=CB(1,1)

2222 CONTINUE

DO 2223 1=1.16
PERM (1,,13 =CB (:3)/
FERN(1,2.13) =CB(,1)
PERM (1,3,13) =CB (1,2)
PERK (,4,13) =CB (1,4)

2223 CONTINUE

DO 2224 1=1 16
PERU , (1, 114 =Ca JI,)
PERM(I,2,14)=CB (,1)
PER• (1,3,14) =CB (1,4)
PERM(I,4,14) =CB (.2)

S2224 CONTINUE

DO 2226 1=1 16

~ ~ I .. ... Pom Z 1 , lS=CB (Z,3 )PER(1,2.15 =CB (1, 2)
PERM(1,3, 1) =CB 1,)
PERg• 315 4, =CB 1,14

2226 CONTIN6E

DO 2226 1=1.16
PERU(1, 1,165 C (1,3)1
PER (1,2,16) CB (12)P 1M(,3,16 =CB 1,4)
PE I ,4,16)="cs~zl1

2226 CONTINUJ

DO 2227 I=1 16
Pe•(1,1,17 =CBD(,3)
PER(-,2,17) =CD(I,4)
PER(I ,3,17)=CB(1, 1)
PERU(1,4,17) =CB (,2)

2227 CONTINUE

DO 2228 1=1 16PERU (1,1,185CD (1,3)
PERU (1,2,18) =cD(1,4)
PER(I,3,18) =CB(I,2)
PER(,4,18)=CB (,1)

2228 CONTINUE

DO 2229 1=1 16
PER•U (1,1195 =CB 1.4)
PERU(1,3,19)=CB(1,2)
PERU•(,4,19 )C(B 13

2229 CONTINUE

DO 2230 1=1 16
PER• (,1,205=CB(1,4)
PERM(I1,220) =CB(11)
ERM (1,3,20 =CB(1,3)PERU(1,4,20) cD (1,2)

2230 CONINIUE
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DO 2231 I=1 16
PERM( 1 =21)=CB (14)
PERM(1,2:21) =CB(,2)
PERM(I,3,21 )=CB 1,1)
PERM(I,4,21) =CB(I,3)

2231 CONTINUE

DO 2232 I=l 16
PERM( 11,22: CB (1,4)
PERM ( I,2,22)=CB(,2)
PERK(M1,3,22) =CB 1,3)
PERM (1,4,22)=CB(I,1)

2232 CONTINUE

DO 2233 I=1 16
PERK 1,.123 =CB (14)PERK (1,2,23)=CB (1,3)

PERM(I,323) =CB(I,1)
PER (1,4,23) =CB(I,2)2233 CONTINUE

DO 2234 I=1 16
PERM(1,24)=CB (1,4)
PERK 1,3,24) =CB (1,2)

PERM(I,4,24) =CB(I,1)2234 CONTINUE

******PUT ALL PERMUTTED MATRICES INTO BINARY FORM IN PREPARATION TO****
****e*POST MULTIPLY THE TRANSPOSE OF THE EXPERIMENTAL FACTOR PATTERN***
******TO DETERMINE BEST FACTOR PATTERN SCORE OF EACH OBSERVE RAW*******
******VARIMAX ROTATED FACTOR PATTERN********************************

DO 1053 H=1,24
DO 1041 I=INVAR
DO 1040 J=1INF

RV(I,J,H)=O
1040 CONTINUE
1041 CONTINUE

DO 1052 I=I,NVAR
BIG=ABS(PERK(I,i,H))
LOCBIG=l
RV(I,1,H)=l

DO 1061 J=2,NF
IF (ABS(PERK(IJH)) .GT. BIG) THEN

TRV(IJ,H)=1
.RV( ILOCBIGH)=O
BIG=ABS(PERK(I,3,I))
LOCBIG=J

END IF
1061 CONTINUE
1062 CONTINUE
1063 CONTINUE

******CALCULATE PATTERN MATCHING SCORE FOR EACH PERMUTATION OF SAMPLE***
******OBSERVED RAW VARIMAX ROTATED FACTOR PATTERI***********************

DO 3001 H=1,24
DO 1162 I=1,4

PRLOAD(IIH)=O
DO 1161 3=1,NVAR

PRLOAD(I.1,H)=PRLOAD(I,1,N)+(TRLOAD(IJ)*RV(J..1))
1151 CONTINUE
1162 CONTINUE

DO 1154 I=1,4
PRLOAD(I.2,H)=O

DO 1153 J=INVAR
PRLOAD(I.2,H)=PRLOADC(I,2,)+(TRLOAD(I,3)*RV(J,2.H))

1163 CONTINUE
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1154 CONTINUE

DO 1156 1=1,4PRLOAD(I,3,H)=O
DO 1165 J=INVAR

PRLOAD(I,3,H)=PRLOAD(I ,3,H)+(TR.OAD(I,J)*RV(J,3,N))
1155 CONTINUE
1166 CONTINUE

DO 1158 1=1,4
PRLOAD(I,4,B)=O

DO 1157 J=1,IVAR
PRLOAD(I,.4,H)=PRLOAD(I,4,H)+(TRLOAD(IJ)*RV(J,4,f))

1167 COFTINUE
1158 CONTINUE

NUmHBITS(aS)=0
DO 1159 I=1 4
NUMHITSCH, S=NUMHITS(H,S)+PRLOAD(I ,IH)

1159 CONTINUE

3001 CONTINUE

******DETEREINE BEST PERMUTATION BY DETERNINIEG HIGHEST SCORING******
*..**u(NUMHITS) OF ALL PERN•iATIONS********,..************************.

NRV=INUMHITS(1.S)
1D=O

DO 3600 N=2,24
IF (NUMHITS(HS) .GT. HEW) THEN

HWnV=UMHITS(H,S)
IDxN

END IF
3600 CONTINUE

*******IF WE ARE NOW WORKING WITH THE LAST OF OUR SAMPLE*********
***$***UNROTATED FACTOR PATTERJS, CALCULATE THE AVERAGE**********
*e*****NUMBER OF MATCHES FOR THE SAMPLE**************************

SUMPIzSUMPR+BRW
IF (S .EQ. SAMPLE) THEN

ABREITS=FLOAT(SUMPR)/FLOAT(SAMPLE)
END IF

******CALCULATE THE EIGENVALUES FOR THE BEST PERMUTED OBSERVED******
****** SAMPLE RAW VARINAX ROTATED FACTOR PATTER*******$***t,**********

DO 287 J=1,4
PNNUM(1,J,S)=O.O

DO 266 I=1.16
PNNUM(1,J,S) =PNNUM(1,J,S)4PERJ(I,3,ID)s*2

266 CONTINUE
287 CONTINUE

******CALCULATE THE EIGENVALUE RNSR FOR EACH BEST PERMUTED SAMPLE**
***e**RAW VARINAX ROTATED SAMPLE FACTOR PATTERN********************

DO 492 J=1,4
PRER(1,JS)=(PNNUM(1 ,J,S)-INUM(J))**2

492 CONTINUE

PESR=O.O
DO 493 J=1,4

PESR=PESR+PRER(1,J,S)
493 CONTINUE

PRMESR(S)=SQRT(PESR/4)-

******CALCULATE THE LOADING RMSR FOR EACH BEST PERNUTED SAMPLE*****
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******RAW VARINAX ROTATED SAMPLE FACTOR PATTERN********************

DO 924 I=1,16
DO 923 J=1 4

R(IJ)= LOAD(I,J)-PERN (IJ,ID) )**2
923 CONTINUE
924 CONTINUE

SR=0.0
DO 926 I=1,16
DO 926 J:l 4

SR=SR+R(I, J)
925 CONTINUE
926 CONTINUE

PRXSR(S)=SqRT (SR./(16*4))

*******IF WE ARE NOW WORKING WITH THE LAST OF OUR SAMPLE**********
*******RAW VARIMAX ROTATED FACTOR PATTERNS, CALCULATE THE AVERAGE*
*******EIGENVILUE RMSR FOR THE SAMPLE****************************

IF (S .EQ. SAMPLE) THEN
PRAMESR=O.0

DO 888 J=I,SIMPLE
PRAMESR=PRAMESR+PRMESR(J)

88G CONTINUE

PRAMESR=PkIMESR/SAMPLE

**e**CALCULATE THE STANDARD DEVIATION OF THE LOADINGS*************
*****RMSR FOR THE SAMPLE OF OBSERVED RAW VARIMAX ROTATED PATTERNS*

RSSE=O.0
DO 1084 J=1,SAMPLE

RSSE=RSSE+(PRMESR(3J)-PRAMESR)**2
1084 CONTINUE

SDRE=SQRT(RSSE/(SAMPLE-1))

END IF

******SET X TO 1 TO PERFORM RAW VARIMAX ROTATION ON EACH OF THE****
******OBSERVED SAMPLE UNROTATED FACTOR PATTE**S********************

K=1

CALL FROTA (NVAR, IF, A, LOA, NORM, MAXIT, W, EPS, C, LDB, T,
&LDT)

****$*CALCULATE EIGENVALUES NORMAL VARIMAX ROTATED FACTOR PATTERN***
******THE MUST BE DONE TO CALCULATE MEASURES OF MERIT AND TO ENSURE*
******THE ROTATED FACTOR PATTERN IS IN THE CORRECT COLUMN ORDER*****

DO 283 3=1 4
xKnM(i,3,S)=O.O

DO 268 I=1,16
KXNM(1,J,S) =KIUM(1.J,S)+C(IX,)**2

268 CONTINUE
283 CONTINUE

******SORT EACH COLUMN OF THE EIGEIVALUES OF THE ROTATED PATTERN****
******PUT FACTOR PATTERN COLUMN IN CORRESPONDING ORDER**************

BIG=O.0

DO 1221 3=1 IF
IF (KNUM(1,1,S) .GT. BIG) THEN

BIG=KIUM( ,JS)
AI=J

END IF

1221 CONTINUE
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KNUNCI.AA,S)=O.0

BIG=0.O
DO 1223 J=1,IF
IF (KNUHC1,J.S) .GT. DIG) THEN'

BIG=KNUN( 1 J,S)
DBB=J

END IF

1223 CONTINUE

KNUN( 1 DB ,S) =0.0
DIGO0.O
DO 1225 .T=1,NF
IF (KNUNCI,JS) .GT. BIG) THEN

BIGKXNUN(1,3,S)
CC=J

END IF
1225 CONTINUE

KIUM(lCC,S)=0.0
B1G=0.6
DO 1227 .T=1,NF
IF (KYUHII1J.S) .GT. BIG) THEN

DIGKXNUM(1,J.S)

END IF
1227 CONTINUE

KNlUM(1,DD,S) =0.0

DO 1228 I=1,NVAR
CK (1.cý21 )=c IM
C.(I,2)C(I,BB)

`I( )C I ,DD)
1228 CONT INUE

******WRITE CORRECTED NORMAL VARIMAI FACTOR PATTEB.J******************

* PRINT*, 'CORRECTED ROTATED NORMAL VARINAXI
* PRINT*
* IRITE(*,10)((CX(I,3),31I,NF),I=1,LDB
* PRINT*

.******VRITE UNCORRECTED NORMAL VARINAX FACTOR PATTERN******************

* PRINT*, 'UNCORRECTED ROTATED NORMIAL VARINAXI
* PRINT*
* RITE(*,10)((C(I,J),Ji=,NF),I=1,LDB
* PRINT*

******CALCULATE EACH PERMUTATION OF NORMAL VARIMAZ ROTATED************
******FACTORPA ER *************************

DO 2111 1=1,NVAR
DO 2110 J=1,NF
PERN(I,J,1)=CK(I.J)

2110 CONTINUE
2111 CONTINUE

DO 2112 1=1,16

1EM 12:2) CK (1,2
PERM( 1,3,2) =CK (1,4)
PERXI (,4,2) CK (1,3)

2112 CONTINUE

DO 2113 1=1,16
PEMI1,3)=CK(I,1)j

PPER51 ~I23 =CKI3
PERM 1.3,3 =CK 1.2j
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PERM(I,4,3)=CK(I,4)
2113 CONTINUE

DO 2114 I=1,16
PERM (121,4)- CK'(, 1)
ERM (I, 2,4)=CK ,'3)

PERM( 1,3,4) =CK(1,4)
PERM(I,4,4)=CK(1,2)2114 CONITINUE

DO 2116 1=1,16
PERM (I, 1,) =K (I,1)
PERM (1,2,) =CK (,4)
PERNM(1,3,5) =CK (1,2)
PERN(I,4,5) =CK (1,3)

2116 CONTINUE

DO 2116 I=1,16
PERM (I, 1,6)=CK (I,1)
PERNM(1,2,6) =CK (1,4)
PERM(1,3,6) =CK (1,3)
PERN(I,4,6) =CK (I,2)

2116 CONTINUE

DO 2117 I=1,16
PERM (,1,7) =CK (, 2)
FeR(I,I2:7)=CKI, 1)
PER(I,3,7) =CK (1,3)
ERN ,4.7) =CK(1,4)

2117 CONT!IUE

DO 2118 1=1,16
PERM(, 18) =CK (I,2)PF.RN(I, 2,8--CK (1,"1)

PERM1,3,8 =CK 14)
PERN (1,4,8 =CK (I,3)

2118 CONTINUE

DO 2119 1=1,16
PER (1, 1,9)=CK(1,2)
PERM(1,2:9) =CtiL,3)
PEM (1, 3,9) CK (I, 1)
PERM(I,4,9) =CK(I,4)

2119 CONTINUE

DO 2120 1=116
;ERM (I 1.1 10) =CK(I 2)

FERN(I1,2 10) =CK (1,3)
PERM(1,3,10) =C (1,4)
PERP(I,4, 10) =CK(I,1)

2120 CONTINUE

DO 2121 1=1 16

PERN(I, 11) =CK (Ij2FER(I,2,11==CK (141PERM 1,3 11 =CKI.(,1)
PERM(I,4,11 ) =CK (1,3)

2121 CONTINUE

DO 2122 I=1 16
FERN ( 1,12 =CK(I, 2)
FERM(1, 2,12) =CK (14)
PERM(1,3,12) =CK (1,3)
PERI (1,4.12)=CK (I,1)

2122 CONTINUE

DO 2123 1=1 16
FERN(1,1,13)=CK (I,3)
FERN (1,2,13) =CK(, 1)
PERM(I,3,13) =CK1(I,2)
PERM(1,4,13) =CK (1,4)

2123 CONTINUE
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DO 2124 1=1 16
PERM(I l14J CK(I:3i
PE•R1,2,14 =CK 1,1
PERN• 1,3,14-CK 1,4C
PERM (I 4,14) =CK (1,2)

2124 CONTIIUE

DO 2126 l=1 16
PERM I'( 16 =CN (I :1
PER• 1.2,19 )CK 1(2
PERM (13,1) =CK I(I
PERN (1,4, l1)=CK(1,4)

2126 CONTINUE

DO 2126 I=1 16
PERM (1,1,16 =CK 1, 3)
PERU(I,2,16)=CK' I,23
PERM (1,3,16) =C (1.4)
PERU(1,4,16) =CK(I,I)

2126 CONTIIUE

DO 2127 I=1 16
PERN(, 11,17)=CK (1,3)
PERM 1.2,17) =CK• 1 4PERM ,3,17 =CK I. 1
PER(I,4,17) =CK (1,2)

2127 COITINUE

DO 2128 1=1 16
PERM 1,18le C(C; 3)
PER (1,2,18) UCK•1:4)
PERKM 1,3,18) =CK 1,2)
PERM(1,4,18) wCK (1,1)

2128 CONTINUE

DO 2129 l=1 16
PERN(II.1.19)=CK(1,4)PERpM 1, 2,19 =OCXl 1 1
PERK 1,3,19 =CK(1,2)
PERM (1,4,19) wCK(I,3)

2129 CONTINUE

DO 2130 1=1 16
PERKN (.1,20)CX(1.4)
PERK (1,220) CK (I, 1)
PERM(1,3,20) =CK (1,3)
PERM(1,4,20) =CK (1,2)

2130- CONTINUE

DO 2131 l=1 16
PER M(I,1,21 :=CK1( :14
PERM (1,2.21) CK(I2
PERM(:,3,21) CK( II
PERK (I,4,21) =CK (1,3)

2131 CONTINUE

DO 2132 lmi 16
PE•RK(11122) =CK(I4)
PERM (1,2,22) CK (1, 2)
PERM (1,3,22) =CK 1.13)
PERK (1,4,22) CX(I,1)

2132 CONTINUE

DO 2133 1=1 16
PERK 1,235 =CK(1,4)
PERK (1,2,23) =CXI 1,3)
PERM (1,3,23) =CK(I, 1)
PERK (1,4,23)=CK(I,2)

2133 CONTINUE

DO 2134 o1t 16
PERM (1,1,245=CK (1.4)
PERK (,2,24) -CK (3)
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PERM(I.3,24) CKH(I2)
PERM(I,4,24 )=CK I I1

2134 CONTINUE

*e****PUT ALL PEPMUTTED MATRICES INTO BINARY FORM IN PREPARATION TO****
******POST MULTIPLY THE TtANSPOSE OF THE EXPERIMENTAL FACTOR PATTERI***
******TO DETERMINE BEST FACTOR PATTERN SCORE*****************...*******

DO 1953 1=1,24
DO 1941 =I.NVAR
DO 1940 J=1 IF

xV(I,.J,5=O
1940 CONTINUE
1941 CONTINUE

DO 1962 I=1,NVAR
BIG=ABS(PERM(I,I,))
LOCBIG=IKV(I,1,0)=!

DO 1961 J=2,NF
IF (ABS(PERM(I,J,H)) .GT. BIG) THENKV CI,J,H)=1

KV (I,LOCBIG,h)=O
BIG=ABS'PERN(I,3,I))
LOCBIG=J

END IF
1961 CONTINUE
1962 CONTINUE
1953 CONTINUE

****i*CALCULATE PATTERN MATCHING SCORE FOR EACH PERMUTATION OF SAMPLE***
******OBSERVED NORMAL VARINAX ROTATED FACTOR PATTERN********************

DO 3002 H=1,24
DO 1162 1=1,4

PRLOAD(L .1 ,H)=O
DO 1161 J=1,EVAR

PRLOAD(I,1,H)=PRLOAD(I,1,N)+(TRLOAD(IJ)*KV(J,1,H))
1161 CONTINUE
1162 CONTINUE

DO 1164 1=1,4
PRLOAD(I.2,H)=O

DO 1163 J=I.NVAR
PRLOAD(:,2,H)=PRLOAD(I,2,1)+(TRLOAD(1,J)*KV(J,2,H))

1163 CONTINUE
1164 CONTINUE

DO 1166 1=1,4
PRLOAD(I,3,H)=O

DO 1166 J=1,NVAR
PRLOAD(I.3,H)=PRLOAD(I,3,H)+(TRLOAD(I,J)*KV(J,3,H))

1165 CONTINUE
1166 CONTINUE

DO 1168 1=1,4
PRLOAD(I,4,H)=O

DO 1167 3=1.NVAR
PRLOAD(I,4.H)=P.LOAD(I,4,I)+(TRLOAD(I,J)*KV(J,4,H))

1167 CONTINUE
1168 CONTINUE

NUMHITS(N,S)=O
DO 1169 1=1 4
NUMHITS(H,S5=NUMHITS(HS)+PRLOAD(IIH)

1169 CONTINUE
3002 CONTINUE

******DETERMINE BEST PERMUTATION BY DETERMINING HIGHEST SCORING*****
***s*e(NUMHITS) OF ALL PERMUTATIONS*************u*..******************

HKI= NUMHITS(1 .S)
ID=O

D-18



DO 3700 H=.2,24
IF (NUNRITS(H,S) .GT. SKI) THENHKI=NUMNHI"s(H.S)

ID=1
END IF

3700 CONTINUE

*******IF WE ARE NOW WORKING WITH THE LAST OF OUR SAMPL9********
*e*****IORMAL VARIMAX ROTATED FACTOR PATTERNS, CALCULATE **e*****
*eeeee* THE AVERAGE NUMBER OF MATCHES FOR THE SAMPLE******$*******

SUNPK*SUNPK+HKI
IF (S .EQ. SAMPLE) THEN

ABKHITS=FLOAT(SUMPK)/FLOAT(SAMPLE)
END IF

*******CALCULATE EIGENVALUES BEST PERM UTTED KAISER VARINAI**********$*

DO 983 J3t,4
PKINUMltJ S)WO.o0

DO 968 1-16
PKNU•(1.J,S) =PKNUN(1,J,S)+PERM(I,3,ID)*#2

968 CONTINUE
983 CONTINUE

#s**s'CALCULATE THE EIGENVALUE RMSR FOR EACH BEST PERMUTED SAMPLE**
*ese*sNORMiL VARIMAX ROTATED SAMPLE FACTOR PATTERN*s******',ks******

DO 442 J1. 4
PRER(1,3,S)= (PKNItt(!.3,S)-INUN(3))**2

442 CONTINUE

PESR=O.O
DO 443 3=1,4

PESR=PESR+PPER(1,JS)
443 CONTINUE

PKNESR(S)=SQRT(PESR/4)

*.***#CALCULATE THE LOADING RNSR FOR EACH BEST PERNUTED SAMPLE*****
******NORMAL VARIMAX ROTATED SAMPLE FACTOR PATTERN********e********

DO 914 I1.16
DO 913331 44

X(I, J) =tLOAD(I,3)-PERM(I ,JID)).*2
913 CONTINUE
914 CONTINUE

DO 916 1-1,16
DO 916 J=1.4

SR=LSR+R(I,3)
915 CONTINUE
916 CONTINUE

PKNSR(S)=SQRT(SR/(l1*4))

**v****IF WE ARE NOW WORKING WITH THE LAST OF OUR SANPLE*********
*****e*NORMAL VARIMAX ROTATED FACTOR PATTERNS. CALCULATE TIE*****

*******AVERAGE EIGENVALUE RMSR FOR THE SANPLEe**************.****

IF (S .EQ. SAMPLE) THEN

PKAWESR=O.0
DO 445 J=1,SAMPLE

PKAMESR=PKAMESR+PKNESR(3)
445 CONTINUE

PKARESR=PKAMESR/SAMPLE

******CALCULATE THE STANDARD DEVIATION OF THE EIGEMVALUE*.'e**i'.
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7- -l 4 4 ;

.e****RMSR FOR THE SIMPLE OF OBSERVED UNROTATED, PATTERNS*******.**

XSSE=O.O
DO 664 3=1,SAMPLE

XSSE=KSSE+CPXMESR(3)-PKAMEsR) *s2
564 CONTINUE

SDKE=SQRT(XSSE/(SAMPLE-1))

*******IF WE ARE NOV WORKING WITH THE LAST OF OUR SAMPLE*********
*******NORMAL VARIMAX FACTOR PATTERNS, CALCULATE THE AVERAGE*****
*******sLOADINGS RMSR FOR THE SNLe**.***********

PKAMSR=O.O
DO 956 3=1,SAMPLE

PXAMSR=PKAMSR+PXMSRC 3)
986 CONTIZUE

PXAMSR=PKAMSR/SAMPLE

*****CALCUJLATE THE STANDARD DEVIATION OF THE LOADINGS***********
*****RMSR FOR THE SAMPLE OF OBSERVED UNROTATED PATfERNS.*********

PKSSM=0.O
DO 973 J1,.SýNPLE

PKSSM=PKSSM+ CPKMSR( 3)-PXANSR)**2
973 Cn) 6UE

PS maSQRT(PRSSM/(SAMPLE-1))

L,.D IF

******END LOOP FOR READING 100 SAMPLES*s*********u*******#*

300 CONTINUE
CLOSE(2)

******WRITE DATA, TO I'out~dat' FL************

*****.COUIT=STRUCTUR NUMBER

*s.*s.HINDEZ=UNIQUýNESS INDEX

**s***CINDEX=CONPLEýZITY INDEX

******AIBHITS=AVERAGE UNROTATED MATCHING SCORE

**.***PAMSR=AVERAGý UNROTATED LOADINGS RMSR

******PSDUX=STD DEV UNROTATED LOADINGS RNSR

******PAMESR=AVERAGE UVROTATED EIGENVALUE RMSR

****s'SSDUE=STD DEV UNROTATED EIGENVALUE RiISR

*#****ABRBITS=AlERAGE ROTATED RAW MATCHING SCORE

**.***PRANSRwAVER.AGE ROTATED RAW LOADINGS RMSR

******PSDRN=STD DEV ROTATED RAW LOADINGS RMSR

**#***PRAMESR 4AVERAGE ROTATED RAW EIGEIVALUE RMSR

*Oso**SDRE=STD DRY ROTATED RAW KIGENVALUE RNSR

ss****ABKHITS=AVERAGE ROTATED NORMAL MATCHING SCORE

**ss**PKAMSR=AVEftAGE ROTATED NORMAL LOADINGS RMSR

******PSDKM=STh DEV ROTATED NORMAL LOADINGS RMSR

**eti**PKANESR=AVERAGE ROTATED NORMAL EIGENVALUE RIISR

*e**O*SDKEzSTD DRY ROTATED NORMAL RIGSNVALUE RMSR
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'S77 .7777-777*- 77

VRITEC26 .7006)COUNT,STRATRIIDEX,CIUDEX PAIBEITS.
kPiMSR, PSDUM.*PAMESR ,SDUE,
klBRH ITS, PRAMSR * SDR , PRAMElR,
kSDRE ,ABKH ITS, KAMSSKES.ARSSDKE

7006 FORMATC1X13, IXF6.3.11XF6.3, IXF6. 3. 1XFS. 1.
&IXF9.5 1XF9.S,11F9.5,11F9.S,1XF5.1.11F9.6,lXF9.S
klXF9.5,11F9.5,1XFS.lIIF9.5.l1F9.5.1IF9.5,1IF9.6j

CLOSE(26)
END
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Appendix E. Residual Plots

This Appendix illustrates the residual plots for the pattern matching regression

model.
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Appendix F. Factor Plots

This Appendix illustrates the Factor plot for the pattern matching score factor

Analysis.
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Appendix G. Residual Plots

This Appendix illustrates the residual plots for the RMSR regression model.
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Appendiz H. Fr ýtor Plots

This Appendix illustrates the Factor plot for the RMSR factor Analysis.
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Appendix L Re.6idual Plots

This Apendix illustrates the residual plots for the RMSER regression model.
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Appendix J. Factor Plots

This Appendix illustrates the Factor plot for the RFMSER factor Analysis.
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Appendix K. Kaiser Data

K. 1 Correlation Matrix

This Appendix lists the correlation matrix for the Holzinger and Harman psy-

chological tests (Holzinger and Harrnan, 1941). Note the matrix has been split into

two (24*8) matrices i•o fit on the page.

1 .318 .403 .468 .321 .335 .304 .332 .326 .116 .308 .314
.318 1 .317 .230 .285 .234 .157 .157 .195 .057 .150 .145
.403 .317 1 .305 .247 .263 .223 .382 .184 -. 075 .091 .140
.468 .230 .30E 1 .227 327 .335 .391 .325 .099 .110 .160
.311 .285 .247 ."27 1 .622 .656 .678 .723 .311 .344 .215
.335 .234 .268 .327 .622 1 .722 .527 .714 .203 .353 .095
.304 .157 .223 .335 .656 .722 1 .619 .685 .246 .232 .18A
.332 .157 .382 .391 .578 .527 .619 1 .532 .285 .300 .271
.326 .195 .184 .325 .7`3 .714 .685 .532 1 .170 .280 .113
.116 .057 -. 075 .099 .311 .203 .246 .285 .170 1 .484 .585
.308 .150 .091 .110 .344 .353 .232 .300 .280 .484 1 .428
.314 .145 .140 .160 .215 .095 .181 .271 .113 .585 .428 1.489 .239 .321 .327 .344 .309 .345 .395 .280 .403 .535 .512
.125 .103 .177 .066 .280 .292 .236 .252 .260 .172 .350 .131
.238 .131 .065 .127 .229 .251 .172 .175 .248 .154 .240 .173
.414 .272 .263 .322 .187 .291 .180 .296 .242 .124 .314 .119
.1'6 .005 .177 .187 .208 .273 .228 .255 .274 .289 362 .276
.368 .255 .211 .251 .263 .167 .169 .250 .208 .317 .350 .349
.270 .112 .312 .137 .190 .251 .226 .274 .274 .190 .290 .110
.366 .292 .297 .339 .398 .435 .451 .427 .446 .173 .202 .246
.369 .306 .165 .349 .318 .263 .314 .362 .266 .405 .399 .355
.413 .232 .250 .380 .441 .386 .396 .357 .483 .160 .304 .193
.474 .348 .383 .335 .435 .431 .405 .601 504 .262 .251 .350
.282 .211 .203 .248 .420 .433 .437 .388 .424 .531 .412 .414

439 .125 .238 .414 .176 .368 .270 .365 .369 .413 .474 .282
.239 .103 .131 .272 .005 .255 ,112 .292 .306 .232 .348 .211
.321 .177 .065 .263 .177 .211 .312 .297 .165 .250 .383 .203
.327 .066 .127 .322 .t87 .251 .137 .339 .349 .380 .335 .248
.344,.280 .229 .187 .208 .263 .190 .398 .318 .441 .435 .420
.309 .292 .251 .291 .273 .167 .251 .435 .263 .386 .431 .433
.345 .236 .172 .180 .228 .159 .226 .451 .314 .396 .405 .437
.395 .252 .175 .296 .2S5 .250 .274 .427 .362 .357 .501 .388
.280 .260 .248 .242 .274 .208 .274 .446 .266 .483 .504 .424
.408 .172 .154 .124 .289 .317 .190 .173 .405 .160 .262 .531
.535 .350 .240 .314 .362 .350 .290 .202 .399 .304 .251 .412
.512 .131 .173 .119 .278 .349 .110 .246 .365 .193 :350 .414

1 .195 .139 .281 .194 .323 .263 .241 .425 .279 .382 .358
.196 1 .370 .412 .341 .201 .20C .302 .183 .243 .242 .304
.139 .370 1 .325 .345 .334 .192 .272 .232 .246 .256 .165
.281 .412 .325 1 .324 .344 .258 .388 .348 .283 .360 .262
.194 .341 .345 .324 1 .448 .324 .262 .173 .273 .287 .326
.323 .201 .334 .344 .448 1 .358 .301 .367 .317 .272 .405
.263 .200 .192 .258 .324 .358 1 .167 .331 .342 .303 .374
.241 .302 .272 .388 .262 .301 .167 1 .413 .463 .509 .366
.425 .183 .232 .348 .173 .357 .331 .413 1 .374 .451 .448
.279 .243 .246 .283 .273 .317 .342 .463 .374 1 .503 .375
.382 .242 .256 .360 .287 .272 .303 .509 .451 .503 1 .434
.358 .304 .165 .262 .326 .405 .374 .366 .448 .375 .434 1
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